Difference between revisions of "Mock AIME 1 2006-2007 Problems/Problem 8"
(→Problem) |
|||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | Let <math>ABCDE</math> be a convex pentagon with <math>AB\sqrt{2}=BC=CD=DE</math>, <math>\angle ABC=150^\circ</math>, <math>\angle BCD=75^\circ</math>, and <math>\angle CDE=165^\circ</math>. If <math>\angle ABE=\frac{m}{n}^\circ</math> where <math>m</math> and <math>n</math> are relatively prime positive integers, find <math>m+n</math>. | + | Let <math>ABCDE</math> be a convex pentagon with <math>\frac{AB}{\sqrt{2}}=BC=CD=DE</math>, <math>\angle ABC=150^\circ</math>, <math>\angle BCD=75^\circ</math>, and <math>\angle CDE=165^\circ</math>. If <math>\angle ABE=\frac{m}{n}^\circ</math> where <math>m</math> and <math>n</math> are relatively prime positive integers, find <math>m+n</math>. |
==Solution== | ==Solution== | ||
Line 14: | Line 14: | ||
<math>\angle BPE=75+60^\circ=180^\circ-2\angle PBE\implies \angle PBE=\frac{45}{2}</math>. <math>\angle ABE=\angle ABP+\angle PBE=45+\frac{45}{2}^\circ=\frac{135}{2}^\circ\implies m+n=\boxed{137}</math>. | <math>\angle BPE=75+60^\circ=180^\circ-2\angle PBE\implies \angle PBE=\frac{45}{2}</math>. <math>\angle ABE=\angle ABP+\angle PBE=45+\frac{45}{2}^\circ=\frac{135}{2}^\circ\implies m+n=\boxed{137}</math>. | ||
− | *[[Mock AIME 1 2006-2007/Problem 7 | Previous Problem]] | + | *[[Mock AIME 1 2006-2007 Problems/Problem 7 | Previous Problem]] |
− | *[[Mock AIME 1 2006-2007/Problem 9 | Next Problem]] | + | *[[Mock AIME 1 2006-2007 Problems/Problem 9 | Next Problem]] |
*[[Mock AIME 1 2006-2007]] | *[[Mock AIME 1 2006-2007]] |
Latest revision as of 13:54, 21 August 2020
Problem
Let be a convex pentagon with , , , and . If where and are relatively prime positive integers, find .
Solution
Let be a point in such that . We see that and thus . Since , we have that is a rhombus. Therefore so . Since we have that is equilateral.
. .