Difference between revisions of "1999 USAMO Problems"

(Created page with "Problems of the 1999 USAMO. ==Day 1== ===Problem 1=== Some checkers placed on an <math>n\times n</math> checkerboard satisfy the following conditions: (a) ...")
 
 
(One intermediate revision by one other user not shown)
Line 43: Line 43:
  
 
== See Also ==
 
== See Also ==
*[[USAMO Problems and Solutions]]
 
 
{{USAMO newbox|year=1999|before=[[1998 USAMO]]|after=[[2000 USAMO]]}}
 
{{USAMO newbox|year=1999|before=[[1998 USAMO]]|after=[[2000 USAMO]]}}
 +
{{MAA Notice}}

Latest revision as of 12:35, 4 July 2013

Problems of the 1999 USAMO.

Day 1

Problem 1

Some checkers placed on an $n\times n$ checkerboard satisfy the following conditions:

(a) every square that does not contain a checker shares a side with one that does;

(b) given any pair of squares that contain checkers, there is a sequence of squares containing checkers, starting and ending with the given squares, such that every two consecutive squares of the sequence share a side.

Prove that at least $(n^{2}-2)/3$ checkers have been placed on the board.

Solution

Problem 2

Let $ABCD$ be a cyclic quadrilateral. Prove that \[|AB - CD| + |AD - BC| \geq 2|AC - BD|.\]

Solution

Problem 3

Let $p > 2$ be a prime and let $a,b,c,d$ be integers not divisible by $p$, such that \[\left\{ \dfrac{ra}{p} \right\} + \left\{ \dfrac{rb}{p} \right\} + \left\{ \dfrac{rc}{p} \right\} + \left\{ \dfrac{rd}{p} \right\} = 2\] for any integer $r$ not divisible by $p$. Prove that at least two of the numbers $a+b$, $a+c$, $a+d$, $b+c$, $b+d$, $c+d$ are divisible by $p$. (Note: $\{x\} = x - \lfloor x \rfloor$ denotes the fractional part of $x$.)

Solution

Day 2

Problem 4

Let $a_{1}, a_{2}, \dots, a_{n}$ ($n > 3$) be real numbers such that \[a_{1} + a_{2} + \cdots + a_{n} \geq n \qquad \mbox{and} \qquad a_{1}^{2} + a_{2}^{2} + \cdots + a_{n}^{2} \geq n^{2}.\] Prove that $\max(a_{1}, a_{2}, \dots, a_{n}) \geq 2$.

Solution

Problem 5

The Y2K Game is played on a $1 \times 2000$ grid as follows. Two players in turn write either an S or an O in an empty square. The first player who produces three consecutive boxes that spell SOS wins. If all boxes are filled without producing SOS then the game is a draw. Prove that the second player has a winning strategy.

Solution

Problem 6

Let $ABCD$ be an isosceles trapezoid with $AB \parallel CD$. The inscribed circle $\omega$ of triangle $BCD$ meets $CD$ at $E$. Let $F$ be a point on the (internal) angle bisector of $\angle DAC$ such that $EF \perp CD$. Let the circumscribed circle of triangle $ACF$ meet line $CD$ at $C$ and $G$. Prove that the triangle $AFG$ is isosceles.

Solution

See Also

1999 USAMO (ProblemsResources)
Preceded by
1998 USAMO
Followed by
2000 USAMO
1 2 3 4 5 6
All USAMO Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png