Difference between revisions of "2002 AMC 8 Problems/Problem 15"

m (Problem)
 
(One intermediate revision by one other user not shown)
Line 23: Line 23:
 
label("$E$", (4*6+2, 0), S);</asy>
 
label("$E$", (4*6+2, 0), S);</asy>
  
Which of the following polygons has the largest area?
 
  
 
<math> \textbf{(A)}\text{A}\qquad\textbf{(B)}\ \text{B}\qquad\textbf{(C)}\ \text{C}\qquad\textbf{(D)}\ \text{D}\qquad\textbf{(E)}\ \text{E} </math>
 
<math> \textbf{(A)}\text{A}\qquad\textbf{(B)}\ \text{B}\qquad\textbf{(C)}\ \text{C}\qquad\textbf{(D)}\ \text{D}\qquad\textbf{(E)}\ \text{E} </math>
Line 32: Line 31:
 
==See Also==
 
==See Also==
 
{{AMC8 box|year=2002|num-b=14|num-a=16}}
 
{{AMC8 box|year=2002|num-b=14|num-a=16}}
 +
{{MAA Notice}}

Latest revision as of 03:47, 25 November 2019

Problem

Which of the following polygons has the largest area?

[asy] size(330); int i,j,k; for(i=0;i<5; i=i+1) { for(j=0;j<5;j=j+1) { for(k=0;k<5;k=k+1) { dot((6i+j, k)); }}} draw((0,0)--(4,0)--(3,1)--(3,3)--(2,3)--(2,1)--(1,1)--cycle); draw(shift(6,0)*((0,0)--(4,0)--(4,1)--(3,1)--(3,2)--(2,1)--(1,1)--(0,2)--cycle)); draw(shift(12,0)*((0,1)--(1,0)--(3,2)--(3,3)--(1,1)--(1,3)--(0,4)--cycle)); draw(shift(18,0)*((0,1)--(2,1)--(3,0)--(3,3)--(2,2)--(1,3)--(1,2)--(0,2)--cycle)); draw(shift(24,0)*((1,0)--(2,1)--(2,3)--(3,2)--(3,4)--(0,4)--(1,3)--cycle)); label("$A$", (0*6+2, 0), S); label("$B$", (1*6+2, 0), S); label("$C$", (2*6+2, 0), S); label("$D$", (3*6+2, 0), S); label("$E$", (4*6+2, 0), S);[/asy]


$\textbf{(A)}\text{A}\qquad\textbf{(B)}\ \text{B}\qquad\textbf{(C)}\ \text{C}\qquad\textbf{(D)}\ \text{D}\qquad\textbf{(E)}\ \text{E}$

Solution

Each polygon can be partitioned into unit squares and right triangles with sidelength $1$. Count the number of boxes enclosed by each polygon, with the unit square being $1$, and the triangle being being $.5$. A has 5, B has 5, C has 5, D has 4.5, and E has 5.5. Therefore, the polygon with the largest area is $\boxed{\textbf{(E)}\ \text{E}}$.

See Also

2002 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png