Difference between revisions of "2004 AMC 8 Problems/Problem 8"

 
Line 9: Line 9:
 
==See Also==
 
==See Also==
 
{{AMC8 box|year=2004|num-b=7|num-a=9}}
 
{{AMC8 box|year=2004|num-b=7|num-a=9}}
 +
{{MAA Notice}}

Latest revision as of 23:55, 4 July 2013

Problem

Find the number of two-digit positive integers whose digits total $7$.

$\textbf{(A)}\ 6\qquad\textbf{(B)}\ 7\qquad\textbf{(C)}\ 8\qquad\textbf{(D)}\ 9\qquad\textbf{(E)}\ 10$

Solution

The numbers are $16, 25, 34, 43, 52, 61, 70$ which gives us a total of $\boxed{\textbf{(B)}\ 7}$.

See Also

2004 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png