Difference between revisions of "Hyperbolic trig functions"

(Created page with "The Hyperbolic trig functions can be thought of the classical trig functions except found on an unit hyperbola. There are as follows: <math>e^x+e^-x</math>")
 
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
The Hyperbolic trig functions can be thought of the classical trig functions except found on an unit hyperbola. There are as follows:
 
The Hyperbolic trig functions can be thought of the classical trig functions except found on an unit hyperbola. There are as follows:
<math>e^x+e^-x</math>
+
 
 +
<math>\sinh(x)=\frac{e^x+e^{-x}}{2}</math>
 +
 
 +
<math>\cosh(x)=\frac{e^x-e^{-x}}{2}</math>
 +
 
 +
<math>\tanh(x)= \frac{\sinh{x}}{\cosh{x}} =\frac{e^x+e^{-x}}{e^x-e^{-x}}</math>
 +
 
 +
Also:
 +
 
 +
<math>\sinh(x)= -i\sin{ix}</math>
 +
 
 +
 
 +
<math>\cosh(x)=\cos{iz}</math>
 +
 
 +
 
 +
<math>\tanh(x)= -1\tan{iz}</math>
 +
 
 +
{{stub}}

Latest revision as of 22:33, 22 May 2013

The Hyperbolic trig functions can be thought of the classical trig functions except found on an unit hyperbola. There are as follows:

$\sinh(x)=\frac{e^x+e^{-x}}{2}$

$\cosh(x)=\frac{e^x-e^{-x}}{2}$

$\tanh(x)= \frac{\sinh{x}}{\cosh{x}} =\frac{e^x+e^{-x}}{e^x-e^{-x}}$

Also:

$\sinh(x)= -i\sin{ix}$


$\cosh(x)=\cos{iz}$


$\tanh(x)= -1\tan{iz}$

This article is a stub. Help us out by expanding it.