Difference between revisions of "2007 AMC 10B Problems/Problem 21"

m (Solution 1)
 
(10 intermediate revisions by 8 users not shown)
Line 5: Line 5:
 
<math>\textbf{(A) } \frac{3}{2} \qquad\textbf{(B) } \frac{60}{37} \qquad\textbf{(C) } \frac{12}{7} \qquad\textbf{(D) } \frac{23}{13} \qquad\textbf{(E)} 2 </math>
 
<math>\textbf{(A) } \frac{3}{2} \qquad\textbf{(B) } \frac{60}{37} \qquad\textbf{(C) } \frac{12}{7} \qquad\textbf{(D) } \frac{23}{13} \qquad\textbf{(E)} 2 </math>
  
==Solution==
+
==Solution 1==
  
 
[[Image:2007AMC10B21.png|center]]
 
[[Image:2007AMC10B21.png|center]]
  
There are many similar triangles in the diagram, but we will only be using <math>\triangle WBZ \sim \triangle ABC.</math> If <math>h</math> is the altitude from <math>B</math> to <math>AC</math> and <math>s</math> is the sidelength of the square, then <math>h-s</math> is the altitude from <math>B</math> to <math>WZ.</math> By similar triangles,
+
There are lots of similar triangles in the diagram, but we will only use <math>\triangle WBZ \sim \triangle ABC.</math> If <math>h</math> is the altitude from <math>B</math> to <math>AC</math> and <math>s</math> is the sidelength of the square, then <math>h-s</math> is the altitude from <math>B</math> to <math>WZ.</math> By similar triangles,
 
<cmath>\begin{align*}
 
<cmath>\begin{align*}
\frac{h-s}{s}&=\frac{h}{5}\\
+
\frac{h-s}{h}&=\frac{s}{5}\\
 +
5(h-s)&=hs\\
 
5h-5s&=hs\\
 
5h-5s&=hs\\
 
5h&=s(h+5)\\
 
5h&=s(h+5)\\
Line 24: Line 25:
  
 
<cmath>s=\frac{5h}{h+5} = \frac{12}{7.4} = \boxed{\mathrm{(B) \ } \frac{60}{37}}</cmath>
 
<cmath>s=\frac{5h}{h+5} = \frac{12}{7.4} = \boxed{\mathrm{(B) \ } \frac{60}{37}}</cmath>
 +
 +
==Solution 2==
 +
 +
Let <math>l</math> be the side length of the inscribed square. Note that <math>\triangle ZYC \sim \triangle WBZ \sim \triangle ABC</math>.
 +
 +
Then we can setup the following ratios:
 +
 +
<cmath>\frac{CZ}{l} = \frac{5}{3} \rightarrow CZ = \frac{5}{3}l</cmath>
 +
<cmath>\frac{ZB}{l} = \frac{4}{5} \rightarrow ZB = \frac{4}{5}l</cmath>
 +
 +
But then <math>\frac{5}{3}l+\frac{4}{5}l = CZ+ZB = CB = 4 \longrightarrow \frac{37}{15}l=4 \longrightarrow l = \frac{60}{37} \Longrightarrow \boxed{\mathrm{(B)}\frac{60}{37}}</math>
 +
 +
== Video Solution by OmegaLearn==
 +
https://youtu.be/FDgcLW4frg8?t=4662
 +
 +
~ pi_is_3.14
  
 
==See Also==
 
==See Also==

Latest revision as of 15:52, 29 July 2024

Problem

Right $\triangle ABC$ has $AB=3, BC=4,$ and $AC=5.$ Square $XYZW$ is inscribed in $\triangle ABC$ with $X$ and $Y$ on $\overline{AC}, W$ on $\overline{AB},$ and $Z$ on $\overline{BC}.$ What is the side length of the square?

$\textbf{(A) } \frac{3}{2} \qquad\textbf{(B) } \frac{60}{37} \qquad\textbf{(C) } \frac{12}{7} \qquad\textbf{(D) } \frac{23}{13} \qquad\textbf{(E)} 2$

Solution 1

2007AMC10B21.png

There are lots of similar triangles in the diagram, but we will only use $\triangle WBZ \sim \triangle ABC.$ If $h$ is the altitude from $B$ to $AC$ and $s$ is the sidelength of the square, then $h-s$ is the altitude from $B$ to $WZ.$ By similar triangles, \begin{align*} \frac{h-s}{h}&=\frac{s}{5}\\ 5(h-s)&=hs\\ 5h-5s&=hs\\ 5h&=s(h+5)\\ s&=\frac{5h}{h+5} \end{align*}

Find the length of the altitude of $\triangle ABC.$ Since it is a right triangle, the area of $\triangle ABC$ is $\frac{1}{2}(3)(4) = 6.$

The area can also be expressed as $\frac{1}{2}(5)(h),$ so $\frac{5}{2}h=6 \longrightarrow h=2.4.$

Substitute back into $s.$

\[s=\frac{5h}{h+5} = \frac{12}{7.4} = \boxed{\mathrm{(B) \ } \frac{60}{37}}\]

Solution 2

Let $l$ be the side length of the inscribed square. Note that $\triangle ZYC \sim \triangle WBZ \sim \triangle ABC$.

Then we can setup the following ratios:

\[\frac{CZ}{l} = \frac{5}{3} \rightarrow CZ = \frac{5}{3}l\] \[\frac{ZB}{l} = \frac{4}{5} \rightarrow ZB = \frac{4}{5}l\]

But then $\frac{5}{3}l+\frac{4}{5}l = CZ+ZB = CB = 4 \longrightarrow \frac{37}{15}l=4 \longrightarrow l = \frac{60}{37} \Longrightarrow \boxed{\mathrm{(B)}\frac{60}{37}}$

Video Solution by OmegaLearn

https://youtu.be/FDgcLW4frg8?t=4662

~ pi_is_3.14

See Also

2007 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png