Difference between revisions of "1962 AHSME Problems/Problem 4"

(Solution)
m (Problem)
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
==Problem==
 
==Problem==
  
If <math>8^x = 32</math>, then x equals:  
+
If <math>8^x = 32</math>, then <math>x</math> equals:  
  
 
<math> \textbf{(A)}\ 4\qquad\textbf{(B)}\ \frac{5}{3}\qquad\textbf{(C)}\ \frac{3}{2}\qquad\textbf{(D)}\ \frac{3}{5}\qquad\textbf{(E)}\ \frac{1}{4} </math>
 
<math> \textbf{(A)}\ 4\qquad\textbf{(B)}\ \frac{5}{3}\qquad\textbf{(C)}\ \frac{3}{2}\qquad\textbf{(D)}\ \frac{3}{5}\qquad\textbf{(E)}\ \frac{1}{4} </math>
Line 9: Line 9:
  
 
So our answer is <math>\boxed{\textbf{(B)}\ \frac{5}{3}}</math>
 
So our answer is <math>\boxed{\textbf{(B)}\ \frac{5}{3}}</math>
 +
 +
==See Also==
 +
{{AHSME 40p box|year=1962|before=Problem 3|num-a=5}}
 +
 +
[[Category:Introductory Algebra Problems]]
 +
{{MAA Notice}}

Latest revision as of 12:21, 21 February 2017

Problem

If $8^x = 32$, then $x$ equals:

$\textbf{(A)}\ 4\qquad\textbf{(B)}\ \frac{5}{3}\qquad\textbf{(C)}\ \frac{3}{2}\qquad\textbf{(D)}\ \frac{3}{5}\qquad\textbf{(E)}\ \frac{1}{4}$

Solution

Recognizing that $8=2^3$, we know that $2^{3x}=32$. Since $2^5=32$, we have $2^{3x}=2^5$. Therefore, $x=\dfrac{5}{3}$.

So our answer is $\boxed{\textbf{(B)}\ \frac{5}{3}}$

See Also

1962 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png