|
|
(5 intermediate revisions by 5 users not shown) |
Line 1: |
Line 1: |
− | == Problem ==
| + | #redirect [[2006 AMC 12A Problems/Problem 10]] |
− | For how many real values of <math>\displaystyle x</math> is <math>\sqrt{120-\sqrt{x}}</math> an integer?
| |
− | | |
− | <math> \mathrm{(A) \ } 3\qquad \mathrm{(B) \ } 6\qquad \mathrm{(C) \ } 9\qquad \mathrm{(D) \ } 10\qquad \mathrm{(E) \ } 11 </math>
| |
− | == Solution ==
| |
− | Since <math>\sqrt{x}</math> cannot be negative, the only integers we get can from our expression are square roots less than 120. The highest is
| |
− | | |
− | <math>11^2=121</math>
| |
− | Thus our set of values is
| |
− | | |
− | {<math>11^2, 10^2, 9^2,....2^2, 1^2, 0^2</math>}
| |
− | | |
− | And our answer is '''11, (E)'''
| |
− | == See Also ==
| |
− | *[[2006 AMC 10A Problems]]
| |