Difference between revisions of "2002 PMWC Problems"

(Problem T3)
(Problem T9)
 
(4 intermediate revisions by the same user not shown)
Line 48: Line 48:
  
 
== Problem I13 ==
 
== Problem I13 ==
 +
 +
<asy>
 +
size(8cm);
 +
int[][] triangle;
 +
int nrows=5;
 +
int count = 1;
 +
for(int i = 0; i < nrows; ++i)
 +
{
 +
int[] temp;
 +
for(int j = 0; j <= i; ++j)
 +
{
 +
temp.push(count);
 +
count+=2;
 +
}
 +
triangle.push(temp);
 +
}
 +
for(int i = 0; i < nrows; ++i)
 +
{
 +
for(int j = 0; j <= i; ++j)
 +
{
 +
label( string(triangle[i][j]), (-i/2+j,-i*sqrt(3)/2) );
 +
}
 +
}
 +
real correction=.175;
 +
string[] ord = {"st", "nd", "rd"};
 +
while(ord.length < nrows)
 +
{
 +
ord.push("th");
 +
}
 +
for(int i = 1; i <= nrows; ++i)
 +
{
 +
label("$" + string(i) + "^\textrm{" + ord[i-1] + "}$ Row:", (-5,(-i+1)*sqrt(3)/2+correction));
 +
}
 +
int orows=3;
 +
real cradius=.07;
 +
for(int i = nrows; i < orows + nrows; ++i)
 +
{
 +
for(int j = 0; j <= i; ++j)
 +
{
 +
fill( circle((-i/2+j,-i*sqrt(3)/2), cradius) );
 +
}
 +
}
 +
//Credit to dasobson for the diagram</asy>
 +
  
 
<asy>
 
<asy>
Line 120: Line 164:
 
== Problem T7 ==  
 
== Problem T7 ==  
  
 +
<asy>
 +
size(7cm);
 +
real eta=pi/2;
 +
pair[] hexvertices;
 +
for(int i = 0; i < 6; ++i)
 +
{
 +
hexvertices[i] = expi(i*4*eta/6+eta);
 +
}
 +
filldraw(hexvertices[0]--hexvertices[1]--hexvertices[2]--hexvertices[3]--hexvertices[4]--hexvertices[5]--cycle,gray);
 +
pair[] overtices;
 +
for(pair h : hexvertices)
 +
{
 +
overtices.push(rotate(30)*h+(sqrt(3)-1)*unit(rotate(30)*h));
 +
}
 +
draw(overtices[0]--overtices[1]--overtices[2]--overtices[3]--overtices[4]--overtices[5]--cycle);
 +
string[] labels = {"F","A","B","C","D","E"};
 +
for(int i = 0; i < overtices.length; ++i)
 +
{
 +
draw(overtices[i]--overtices[(i+2)%overtices.length]);
 +
label(labels[i],overtices[i],unit(overtices[i]));
 +
}
 +
//Credit to dasobson for the diagram</asy>
 
[[2002 PMWC Problems/Problem T7|Solution]]
 
[[2002 PMWC Problems/Problem T7|Solution]]
  
Line 127: Line 193:
  
 
== Problem T9 ==
 
== Problem T9 ==
 
+
<asy>
 +
size(6cm);
 +
pair R = (25,0),U=(0,20);
 +
draw(origin--R--(R+U)--U--cycle);
 +
real radius=2;
 +
pair ccenter=U+(radius,-radius);
 +
draw(circle(ccenter,radius));
 +
real lift=1;
 +
real space =3;
 +
real shift = 1;
 +
draw(shift((shift,0))*circle(ccenter,radius),linetype("4 4"));
 +
draw(shift((2shift,0))*circle(ccenter,radius),linetype("4 4"));
 +
draw(shift(0,lift)*((U+R/2+(space,0))--(R+U)),EndArrow(HookHead,8));
 +
draw(shift(0,lift)*((U+R/2-(space,0))--(U)),EndArrow(HookHead,8));
 +
label("$25\textrm{cm}$",U+R/2,N);
 +
draw(shift(lift,0)*((R+U/2+(0,space))--(R+U)),EndArrow(HookHead,8));
 +
draw(shift(lift,0)*((R+U/2-(0,space))--(R)),EndArrow(HookHead,8));
 +
label(rotate(270)*Label("$20\textrm{cm}$",U/2+R,E));
 +
draw((ccenter+(radius,0))--(ccenter+R-(2radius,0)),EndArrow(HookHead,8));
 +
draw((ccenter+R-(2radius,0))--(R-(radius,0)+(0,radius)),EndArrow(HookHead,8));
 +
draw((R-(radius,0)+(0,radius))--(ccenter.x,radius),EndArrow(HookHead,8));
 +
draw((ccenter.x,radius)--(ccenter.x,U.y-2radius),EndArrow(HookHead,8));
 +
//Credit to dasobson for the diagram</asy>
 
[[2002 PMWC Problems/Problem T9|Solution]]
 
[[2002 PMWC Problems/Problem T9|Solution]]
  
 
== Problem T10 ==
 
== Problem T10 ==
  
 +
<asy>
 +
size(8cm);
 +
void hexagon(pair p)
 +
{
 +
draw((p.x,p.y-1)--(p.x-sqrt(3)/2,p.y-.5)--(p.x-sqrt(3)/2,p.y+.5)--(p.x,p.y+1)--(p.x+sqrt(3)/2,p.y+.5)--(p.x+sqrt(3)/2,p.y-.5)--cycle);
 +
return;
 +
}
 +
for(int i = 0; i < 10; ++i)
 +
{
 +
for(int j = 0; j <= i; ++j)
 +
{
 +
hexagon((-sqrt(3)*i/2+sqrt(3)*j,0-3/2*i));
 +
}
 +
}
 +
//Credit to dasobson for the diagram</asy>
 
[[2002 PMWC Problems/Problem T10|Solution]]
 
[[2002 PMWC Problems/Problem T10|Solution]]

Latest revision as of 15:07, 23 April 2014