Difference between revisions of "1969 AHSME Problems/Problem 9"

(Created page with "== Problem == The arithmetic mean (ordinary average) of the fifty-two successive positive integers beginning at 2 is: <math>\text{(A) } 27\quad \text{(B) } 27\tfrac{1}{4}\quad ...")
 
(Problem: fix answer choice)
 
(2 intermediate revisions by 2 users not shown)
Line 7: Line 7:
 
\text{(C) } 27\tfrac{1}{2}\quad
 
\text{(C) } 27\tfrac{1}{2}\quad
 
\text{(D) } 28\quad
 
\text{(D) } 28\quad
\text{(E) } 27\tfrac{1}{2}</math>
+
\text{(E) } 28\tfrac{1}{2}</math>
  
 
== Solution ==
 
== Solution ==
<math>\fbox{C}</math>
+
To solve the problem, find the sum of the first <math>52</math> terms of an [[arithmetic sequence]] with first term <math>2</math> and common difference <math>1</math> and divide that by <math>52</math>.  The <math>52^\text{nd}</math> term of the sequence is <math>2+51=53</math>, so the sum of the first <math>52</math> terms of the sequence is <math>\frac{52(2+53)}{2} = 1430</math>.  Thus, the [[arithmetic mean]] is <math>\frac{1430}{52} = \frac{55}{2} = \boxed{\textbf{(C) } 27\frac{1}{2}}</math>.
  
 
== See also ==
 
== See also ==
{{AHSME box|year=1969|num-b=8|num-a=10}}   
+
{{AHSME 35p box|year=1969|num-b=8|num-a=10}}   
  
 
[[Category: Introductory Algebra Problems]]
 
[[Category: Introductory Algebra Problems]]
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 14:42, 13 November 2024

Problem

The arithmetic mean (ordinary average) of the fifty-two successive positive integers beginning at 2 is:

$\text{(A) } 27\quad \text{(B) } 27\tfrac{1}{4}\quad \text{(C) } 27\tfrac{1}{2}\quad \text{(D) } 28\quad \text{(E) } 28\tfrac{1}{2}$

Solution

To solve the problem, find the sum of the first $52$ terms of an arithmetic sequence with first term $2$ and common difference $1$ and divide that by $52$. The $52^\text{nd}$ term of the sequence is $2+51=53$, so the sum of the first $52$ terms of the sequence is $\frac{52(2+53)}{2} = 1430$. Thus, the arithmetic mean is $\frac{1430}{52} = \frac{55}{2} = \boxed{\textbf{(C) } 27\frac{1}{2}}$.

See also

1969 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png