Difference between revisions of "1969 AHSME Problems/Problem 30"
(Created page with "== Problem == Let <math>P</math> be a point of hypotenuse <math>AB</math> (or its extension) of isosceles right triangle <math>ABC</math>. Let <math>s=AP^2+PB^2</math>. Then: <...") |
Rockmanex3 (talk | contribs) (Solution to Problem 30) |
||
Line 10: | Line 10: | ||
== Solution == | == Solution == | ||
− | |||
− | == See | + | <asy> |
+ | pair A=(0,50),B=(50,0),C=(0,0); | ||
+ | draw(A--B--C--A); | ||
+ | dot(A); | ||
+ | label("$A$",A,NE); | ||
+ | dot(B); | ||
+ | label("$B$",B,NE); | ||
+ | dot(C); | ||
+ | label("$C$",C,SW); | ||
+ | |||
+ | pair P=(14,36); | ||
+ | dot(P); | ||
+ | label("$P$",P,NE); | ||
+ | draw((0,36)--P,dotted); | ||
+ | draw((14,0)--P,dotted); | ||
+ | |||
+ | label("$a$",(7,36),S); | ||
+ | label("$a$",(0,43),W); | ||
+ | label("$x-a$",(14,18),E); | ||
+ | label("$x-a$",(32,0),S); | ||
+ | </asy> | ||
+ | |||
+ | Consider the case where <math>P</math> is on the hypotenuse of <math>AB</math>. Draw perpendicular lines from <math>P</math> towards the sides. Using the [[Pythagorean Theorem]], | ||
+ | <cmath>AP^2 = a^2 + a^2</cmath> | ||
+ | <cmath>BP^2 = (x-a)^2 + (x-a)^2</cmath> | ||
+ | <cmath>CP^2 = a^2 + (x-a)^2</cmath> | ||
+ | This means | ||
+ | <cmath>s = 4a^2 - 4ax + 2x^2</cmath> | ||
+ | <cmath>2 \cdot CP^2 = 4a^2 - 4ax + 2x^2</cmath> | ||
+ | Thus, <math>s = 2 \cdot CP^2</math> when <math>P</math> is on the hypotenuse of <math>AB</math>. | ||
+ | |||
+ | |||
+ | <asy> | ||
+ | pair A=(0,50),B=(50,0),C=(0,0); | ||
+ | draw(A--B--C--A); | ||
+ | dot(A); | ||
+ | label("$A$",A,NE); | ||
+ | dot(B); | ||
+ | label("$B$",B,NE); | ||
+ | dot(C); | ||
+ | label("$C$",C,SW); | ||
+ | |||
+ | pair P=(-10,60); | ||
+ | dot(P); | ||
+ | label("$P$",P,NE); | ||
+ | draw(P--A); | ||
+ | draw(P--(-10,50)--A,dotted); | ||
+ | draw(P--(-10,0)--C,dotted); | ||
+ | |||
+ | pair D=(-10,50); | ||
+ | dot(D); | ||
+ | label("$D$",D,SW); | ||
+ | |||
+ | label("$a$",(-10,55),W); | ||
+ | label("$a$",(-5,50),S); | ||
+ | label("$x$",(0,25),E); | ||
+ | label("$x$",(25,0),S); | ||
+ | |||
+ | </asy> | ||
+ | |||
+ | Consider the case where <math>P</math> is on the extension of <math>AB</math>. [[WLOG]], let point <math>A</math> be between point <math>P</math> and point <math>B</math>. Extend <math>BC</math> and draw perpendicular line from <math>P</math>. Also, draw point <math>D</math>, where <math>PD \parallel AC</math> and <math>DA \parallel CB</math>. | ||
+ | |||
+ | Using the Pythagorean Theorem again, | ||
+ | <cmath>AP^2 = a^2 + a^2</cmath> | ||
+ | <cmath>BP^2 = (a+x)^2 + (a+x)^2</cmath> | ||
+ | <cmath>CP^2 = (a+x)^2 + a^2</cmath> | ||
+ | That means | ||
+ | <cmath>s = 4a^2 + 4ax + 2x^2</cmath> | ||
+ | <cmath>2 \cdot CP^2 = 4a^2 + 4ax + 2x^2</cmath> | ||
+ | Thus, <math>s = 2 \cdot CP^2</math> when <math>P</math> is outside the hypotenuse. | ||
+ | |||
+ | In summary, <math>AP^2 + BP^2 = 2 \cdot CP^2</math>, so the answer is <math>\boxed{\textbf{(D)}}</math>. | ||
+ | |||
+ | == See Also == | ||
{{AHSME 35p box|year=1969|num-b=29|num-a=31}} | {{AHSME 35p box|year=1969|num-b=29|num-a=31}} | ||
− | [[Category: | + | [[Category: Introductory Geometry Problems]] |
{{MAA Notice}} | {{MAA Notice}} |
Latest revision as of 22:12, 21 June 2018
Problem
Let be a point of hypotenuse (or its extension) of isosceles right triangle . Let . Then:
Solution
Consider the case where is on the hypotenuse of . Draw perpendicular lines from towards the sides. Using the Pythagorean Theorem, This means Thus, when is on the hypotenuse of .
Consider the case where is on the extension of . WLOG, let point be between point and point . Extend and draw perpendicular line from . Also, draw point , where and .
Using the Pythagorean Theorem again, That means Thus, when is outside the hypotenuse.
In summary, , so the answer is .
See Also
1969 AHSC (Problems • Answer Key • Resources) | ||
Preceded by Problem 29 |
Followed by Problem 31 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.