Difference between revisions of "1962 AHSME Problems/Problem 2"

m (See Also)
(latex error in problem)
 
Line 1: Line 1:
 
==Problem==
 
==Problem==
  
The expression <math>\sqrt{\frac{4}{3}} - \sqrt{\frac{3}{4}</math> is equal to:  
+
The expression <math>\sqrt{\frac{4}{3}} - \sqrt{\frac{3}{4}}</math> is equal to:  
  
 
<math> \textbf{(A)}\ \frac{\sqrt{3}}{6}\qquad\textbf{(B)}\ \frac{-\sqrt{3}}{6}\qquad\textbf{(C)}\ \frac{\sqrt{-3}}{6}\qquad\textbf{(D)}\ \frac{5\sqrt{3}}{6}\qquad\textbf{(E)}\ 1 </math>
 
<math> \textbf{(A)}\ \frac{\sqrt{3}}{6}\qquad\textbf{(B)}\ \frac{-\sqrt{3}}{6}\qquad\textbf{(C)}\ \frac{\sqrt{-3}}{6}\qquad\textbf{(D)}\ \frac{5\sqrt{3}}{6}\qquad\textbf{(E)}\ 1 </math>

Latest revision as of 21:45, 26 December 2015

Problem

The expression $\sqrt{\frac{4}{3}} - \sqrt{\frac{3}{4}}$ is equal to:

$\textbf{(A)}\ \frac{\sqrt{3}}{6}\qquad\textbf{(B)}\ \frac{-\sqrt{3}}{6}\qquad\textbf{(C)}\ \frac{\sqrt{-3}}{6}\qquad\textbf{(D)}\ \frac{5\sqrt{3}}{6}\qquad\textbf{(E)}\ 1$

Solution

Simplifying $\sqrt{\dfrac{4}{3}}$ yields $\dfrac{2}{\sqrt{3}}=\dfrac{2\sqrt{3}}{3}$.


Simplifying $\sqrt{\dfrac{3}{4}}$ yields $\dfrac{\sqrt{3}}{2}$.


$\dfrac{2\sqrt{3}}{3}-\dfrac{\sqrt{3}}{2}=\dfrac{4\sqrt{3}}{6}-\dfrac{3\sqrt{3}}{6}=\dfrac{\sqrt{3}}{6}$.


Since we cannot simplify further, the correct answer is $\boxed{\textbf{(A)}\ \frac{\sqrt{3}}{6}}$

See Also

1962 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png