Difference between revisions of "1962 AHSME Problems/Problem 13"

m (Solution)
m (Problem)
 
(3 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 
==Problem==
 
==Problem==
<math>R</math> varies directly as <math>S</math> and inverse as <math>T</math>. When <math>R = \frac{4}{3}</math> and <math>T = \frac {9}{14}</math>, <math>S = \frac37</math>. Find <math>S</math> when <math>R = \sqrt {48}</math> and <math>T = \sqrt {75}</math>.
+
<math>R</math> varies directly as <math>S</math> and inversely as <math>T</math>. When <math>R = \frac{4}{3}</math> and <math>T = \frac {9}{14}</math>, <math>S = \frac37</math>. Find <math>S</math> when <math>R = \sqrt {48}</math> and <math>T = \sqrt {75}</math>.
  
 
<math> \textbf{(A)}\ 28\qquad\textbf{(B)}\ 30\qquad\textbf{(C)}\ 40\qquad\textbf{(D)}\ 42\qquad\textbf{(E)}\ 60 </math>
 
<math> \textbf{(A)}\ 28\qquad\textbf{(B)}\ 30\qquad\textbf{(C)}\ 40\qquad\textbf{(D)}\ 42\qquad\textbf{(E)}\ 60 </math>
  
 
==Solution==
 
==Solution==
{{solution}}
+
 
 +
<cmath>R=c\cdot\frac{S}T</cmath>
 +
 
 +
for some constant <math>c</math>.
 +
 
 +
You know that
 +
 
 +
<cmath>\frac43=c\cdot\frac{3/7}{9/14}=c\cdot\frac37\cdot\frac{14}9=c\cdot\frac23\,,</cmath>
 +
 
 +
so
 +
 
 +
<cmath>c=\frac{4/3}{2/3}=2\,.</cmath>
 +
 
 +
When <math>R=\sqrt{48}</math> and <math>T=\sqrt{75}</math> we have
 +
 
 +
<cmath>\sqrt{48}=\frac{2S}{\sqrt{75}}\,,</cmath>
 +
 
 +
so
 +
 
 +
<cmath>S=\frac12\sqrt{48\cdot75}=30\,.</cmath> <math> \boxed{B} </math>
 +
 
 +
-- zixuan 12
  
 
==See Also==
 
==See Also==

Latest revision as of 21:19, 10 April 2023

Problem

$R$ varies directly as $S$ and inversely as $T$. When $R = \frac{4}{3}$ and $T = \frac {9}{14}$, $S = \frac37$. Find $S$ when $R = \sqrt {48}$ and $T = \sqrt {75}$.

$\textbf{(A)}\ 28\qquad\textbf{(B)}\ 30\qquad\textbf{(C)}\ 40\qquad\textbf{(D)}\ 42\qquad\textbf{(E)}\ 60$

Solution

\[R=c\cdot\frac{S}T\]

for some constant $c$.

You know that

\[\frac43=c\cdot\frac{3/7}{9/14}=c\cdot\frac37\cdot\frac{14}9=c\cdot\frac23\,,\]

so

\[c=\frac{4/3}{2/3}=2\,.\]

When $R=\sqrt{48}$ and $T=\sqrt{75}$ we have

\[\sqrt{48}=\frac{2S}{\sqrt{75}}\,,\]

so

\[S=\frac12\sqrt{48\cdot75}=30\,.\] $\boxed{B}$

-- zixuan 12

See Also

1962 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png