Difference between revisions of "2007 IMO Problems/Problem 2"
m (Created page with "== Problem == Consider five points <math>A,B,C,D</math>, and <math>E</math> such that <math>ABCD</math> is a parallelogram and <math>BCED</math> is a cyclic quadrilateral. Let <...") |
|||
(One intermediate revision by one other user not shown) | |||
Line 5: | Line 5: | ||
line <math>BC</math> at <math>G</math>. Suppose also that <math>EF=EG=EC</math>. Prove that <math>\ell</math> is the bisector of <math>\angle DAB</math>. | line <math>BC</math> at <math>G</math>. Suppose also that <math>EF=EG=EC</math>. Prove that <math>\ell</math> is the bisector of <math>\angle DAB</math>. | ||
− | == Solution == | + | ==Solution== |
+ | <center><asy> | ||
+ | import cse5; | ||
+ | import graph; | ||
+ | import olympiad; | ||
+ | dotfactor = 3; | ||
+ | unitsize(1.5inch); | ||
+ | |||
+ | path circle = Circle(origin, 1); | ||
+ | draw(circle); | ||
+ | |||
+ | pair D = (-sqrt(3)/2, -0.5), C = (sqrt(3)/2, -0.5); | ||
+ | //G = bisectorpoint(C, B, D); | ||
+ | pair Ee = rotate(38,C)*D; | ||
+ | pair E = IP(C--Ee, circle,1); | ||
+ | pair Gg = rotate(76,C)*D; | ||
+ | path circle2 = Circle(E, length(C-E)); | ||
+ | pair G = IP(C--Gg, circle2, 1); | ||
+ | pair F = IP(C--D, circle2, 1); | ||
+ | pair Bb = rotate(-104,C)*D; | ||
+ | pair B = IP(C--Bb, circle, 1); | ||
+ | |||
+ | pair A = extension((-1,B.y),(1,B.y),G,F); | ||
+ | draw(circle2, dashed); | ||
+ | draw(A--G); draw(C--D--A--B); draw(G--B); draw(E--F); draw(E--C); draw(E--G); | ||
+ | dot("$C$", C, dir(30)); dot("$D$", D, SW); dot("$G$", G, SE); | ||
+ | dot("$E$", E, SW); dot("$F$", F, SW); dot("$A$", A, SW); dot("$B$", B, SE); | ||
+ | draw(D--E,dashed); draw(B--E,dashed); | ||
+ | |||
+ | </asy></center> | ||
+ | Since <math>\angle{DAF}=\angle{CGF}</math>, <math>\angle{BAF}=\angle{CFG}</math>, it suffices to prove <math>CF=CG</math>. | ||
+ | |||
+ | Let <math>\angle{FCE}=\alpha</math>, <math>\angle{GCE}=\beta</math>, <math>\angle{CDE}=\gamma</math>. We have: | ||
+ | <cmath>CF=2CE\cos{\alpha}, CG=2CE\cos{\beta}</cmath> | ||
+ | so, | ||
+ | <cmath>\dfrac{CF}{CG}=\dfrac{\cos{\alpha}}{\cos{\beta}}</cmath> | ||
+ | Meantime, using Law of Sines on <math>\triangle{DEC}</math>, we have, | ||
+ | <cmath>\dfrac{CE}{\sin{\gamma}}=\dfrac{DC}{\sin{(180-\alpha-\gamma)}}=\dfrac{DC}{\sin{(\alpha+\gamma)}}</cmath> | ||
+ | Using Law of Sines on <math>\triangle{BEG}</math>, and notice that <math>\angle{CBE}=\angle{CDE}=\gamma</math>, we have, | ||
+ | <cmath>\dfrac{CE}{\sin{\gamma}}=\dfrac{BG}{\sin{(180-\beta-\gamma)}}=\dfrac{BG}{\sin{(\beta+\gamma)}}</cmath> | ||
+ | so, | ||
+ | <cmath>\dfrac{DC}{BG}=\dfrac{\sin{(\alpha+\gamma)}}{\sin{(\beta+\gamma)}}</cmath> | ||
+ | Since <math>\triangle{GFC} \sim \triangle{GAB}</math>, and <math>DC=AB</math>, we have, <math>\dfrac{DC}{BG}=\dfrac{AB}{BG}=\dfrac{CF}{CG}</math>. Hence, | ||
+ | <cmath>\dfrac{\sin{(\alpha+\gamma)}}{\sin{(\beta+\gamma)}}=\dfrac{\cos{\alpha}}{\cos{\beta}}</cmath> | ||
+ | or, | ||
+ | <cmath>\sin{(\alpha+\gamma)}\cos{\beta}=\sin{(\beta+\gamma)}\cos{\alpha}</cmath> | ||
+ | <cmath>\dfrac{1}{2}(\sin{(\alpha+\gamma+\beta)}-\sin{(\alpha+\gamma-\beta)})=\dfrac{1}{2}(\sin{(\alpha+\gamma+\beta)}-\sin{(\beta+\gamma-\alpha)})</cmath> | ||
+ | <cmath>\sin{(\alpha+\gamma-\beta)}=\sin{(\beta+\gamma-\alpha)}</cmath> | ||
+ | There are two possibilities: (1) <math>\alpha+\gamma-\beta = \beta+\gamma-\alpha</math>, or (2) <math>\alpha+\gamma-\beta = 180 - (\beta+\gamma-\alpha)</math>. However, (2) would mean <math>\gamma=90</math>, then <math>EC</math> would be a diameter, and <math>EF < EC</math> because <math>F</math> is inside the circle, so (2) is not valid. From condition (1), we have <math>\alpha=\beta</math>, therefore <math>CF=CG</math>. <math>\square</math> | ||
+ | |||
+ | Solution by Mathdummy | ||
+ | |||
+ | {{alternate solutions}} | ||
+ | |||
+ | {{IMO box|year=2007|num-b=1|num-a=3}} | ||
+ | |||
+ | [[Category:Olympiad Geometry Problems]] |
Latest revision as of 00:45, 24 August 2018
Problem
Consider five points , and such that is a parallelogram and is a cyclic quadrilateral. Let be a line passing through . Suppose that intersects the interior of the segment at and intersects line at . Suppose also that . Prove that is the bisector of .
Solution
Since , , it suffices to prove .
Let , , . We have: so, Meantime, using Law of Sines on , we have, Using Law of Sines on , and notice that , we have, so, Since , and , we have, . Hence, or, There are two possibilities: (1) , or (2) . However, (2) would mean , then would be a diameter, and because is inside the circle, so (2) is not valid. From condition (1), we have , therefore .
Solution by Mathdummy
Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.
2007 IMO (Problems) • Resources | ||
Preceded by Problem 1 |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Problem 3 |
All IMO Problems and Solutions |