Difference between revisions of "Mock AIME I 2015 Problems/Problem 3"

(Created page with "==Problem 3== Let <math>A,B,C</math> be points in the plane such that <math>AB=25</math>, <math>AC=29</math>, and <math>\angle BAC<90^\circ</math>. Semicircles with diameters ...")
 
(Improved solution)
 
Line 3: Line 3:
  
 
==Solution==
 
==Solution==
 +
First note that <math>\triangle APB</math> is a 3-4-5 scaled right triangle with <math>\overline{B P}=15</math> and <math>\triangle APC</math> is a 20-21-29 right triangle with <math>\overline{P C}=21</math> since <math>\angle APB</math> and <math>\angle APC</math> are inscribed in semicircles, and thus right angles.  Also, since <math>\angle APB</math> and <math>\angle APC</math> are right, points B, P and C are collinear and <math>BC=BP+PC=15+21=\boxed{036}.</math> 
 +
 +
Solution by D. Adrian Tanner
 +
 +
==Original Solution==
 
First note that <math>\triangle APB</math> is a 3-4-5 right triangle and <math>\triangle APC</math> is a 20-21-29 right triangle. Thus we have <math>\cos \angle BAP = \dfrac{20}{25}=\dfrac{4}{5}</math> and <math>\cos \angle PAC = \dfrac{20}{29}</math>. Similarly, we have <math>\sin \angle BAP = \dfrac{15}{25}=\dfrac{3}{5}</math> and <math>\sin \angle PAC = \dfrac{21}{29}</math>. Applying the Law of Cosines on <math>\angle BAC</math> gives us <cmath>BC=\sqrt{25^2+29^2-2\cdot25\cdot29\cdot\cos (\angle BAP+\angle PAC)}.</cmath> We also know that <cmath>\cos (\angle BAP+\angle PAC)=\cos\angle BAP\cos\angle PAC - \sin \angle BAP \sin \angle PAC=\dfrac{20}{25}\cdot\dfrac{20}{29}-\dfrac{15}{25}\cdot\dfrac{21}{29}=\dfrac{17}{145}.</cmath> Hence, we have <cmath>BC=\sqrt{25^2+29^2-2\cdot25\cdot29\cdot\dfrac{17}{145}}=\sqrt{1296}=\boxed{036}.</cmath>
 
First note that <math>\triangle APB</math> is a 3-4-5 right triangle and <math>\triangle APC</math> is a 20-21-29 right triangle. Thus we have <math>\cos \angle BAP = \dfrac{20}{25}=\dfrac{4}{5}</math> and <math>\cos \angle PAC = \dfrac{20}{29}</math>. Similarly, we have <math>\sin \angle BAP = \dfrac{15}{25}=\dfrac{3}{5}</math> and <math>\sin \angle PAC = \dfrac{21}{29}</math>. Applying the Law of Cosines on <math>\angle BAC</math> gives us <cmath>BC=\sqrt{25^2+29^2-2\cdot25\cdot29\cdot\cos (\angle BAP+\angle PAC)}.</cmath> We also know that <cmath>\cos (\angle BAP+\angle PAC)=\cos\angle BAP\cos\angle PAC - \sin \angle BAP \sin \angle PAC=\dfrac{20}{25}\cdot\dfrac{20}{29}-\dfrac{15}{25}\cdot\dfrac{21}{29}=\dfrac{17}{145}.</cmath> Hence, we have <cmath>BC=\sqrt{25^2+29^2-2\cdot25\cdot29\cdot\dfrac{17}{145}}=\sqrt{1296}=\boxed{036}.</cmath>

Latest revision as of 22:31, 10 June 2015

Problem 3

Let $A,B,C$ be points in the plane such that $AB=25$, $AC=29$, and $\angle BAC<90^\circ$. Semicircles with diameters $\overline{AB}$ and $\overline{AC}$ intersect at a point $P$ with $AP=20$. Find the length of line segment $\overline{BC}$.

Solution

First note that $\triangle APB$ is a 3-4-5 scaled right triangle with $\overline{B P}=15$ and $\triangle APC$ is a 20-21-29 right triangle with $\overline{P C}=21$ since $\angle APB$ and $\angle APC$ are inscribed in semicircles, and thus right angles. Also, since $\angle APB$ and $\angle APC$ are right, points B, P and C are collinear and $BC=BP+PC=15+21=\boxed{036}.$

Solution by D. Adrian Tanner

Original Solution

First note that $\triangle APB$ is a 3-4-5 right triangle and $\triangle APC$ is a 20-21-29 right triangle. Thus we have $\cos \angle BAP = \dfrac{20}{25}=\dfrac{4}{5}$ and $\cos \angle PAC = \dfrac{20}{29}$. Similarly, we have $\sin \angle BAP = \dfrac{15}{25}=\dfrac{3}{5}$ and $\sin \angle PAC = \dfrac{21}{29}$. Applying the Law of Cosines on $\angle BAC$ gives us \[BC=\sqrt{25^2+29^2-2\cdot25\cdot29\cdot\cos (\angle BAP+\angle PAC)}.\] We also know that \[\cos (\angle BAP+\angle PAC)=\cos\angle BAP\cos\angle PAC - \sin \angle BAP \sin \angle PAC=\dfrac{20}{25}\cdot\dfrac{20}{29}-\dfrac{15}{25}\cdot\dfrac{21}{29}=\dfrac{17}{145}.\] Hence, we have \[BC=\sqrt{25^2+29^2-2\cdot25\cdot29\cdot\dfrac{17}{145}}=\sqrt{1296}=\boxed{036}.\]