Difference between revisions of "2015 USAJMO Problems/Problem 4"
(Created page with "===Problem=== Find all functions <math>f:\mathbb{Q}\rightarrow\mathbb{Q}</math> such that<cmath>f(x)+f(t)=f(y)+f(z)</cmath>for all rational numbers <math>x<y<z<t</math> that f...") |
(→Solution) |
||
(3 intermediate revisions by 3 users not shown) | |||
Line 2: | Line 2: | ||
Find all functions <math>f:\mathbb{Q}\rightarrow\mathbb{Q}</math> such that<cmath>f(x)+f(t)=f(y)+f(z)</cmath>for all rational numbers <math>x<y<z<t</math> that form an arithmetic progression. (<math>\mathbb{Q}</math> is the set of all rational numbers.) | Find all functions <math>f:\mathbb{Q}\rightarrow\mathbb{Q}</math> such that<cmath>f(x)+f(t)=f(y)+f(z)</cmath>for all rational numbers <math>x<y<z<t</math> that form an arithmetic progression. (<math>\mathbb{Q}</math> is the set of all rational numbers.) | ||
− | ===Solution=== | + | ===Solution 1=== |
− | According to the given, f(x-a)+f(x+0.5a)=f(x-0.5a)+f(x), where x and a are rational. Likewise f(x-0.5a)+f(x+a)=f(x+0.5a)+f(x). Hence f(x+a)-f(x)= f(x)-f(x-a), namely 2f(x)=f(x-a)+f(x+a). Let f(0)=C, then consider F(x)=f(x)-C, where F(0)=0, 2F(x)=F(x-a)+F(x+a). | + | According to the given, <math>f(x-a)+f(x+0.5a)=f(x-0.5a)+f(x)</math>, where x and a are rational. Likewise <math>f(x-0.5a)+f(x+a)=f(x+0.5a)+f(x)</math>. Hence <math>f(x+a)-f(x)= f(x)-f(x-a)</math>, namely <math>2f(x)=f(x-a)+f(x+a)</math>. Let <math>f(0)=C</math>, then consider <math>F(x)=f(x)-C</math>, where <math>F(0)=0,</math> <math>2F(x)=F(x-a)+F(x+a)</math>. |
− | F(2x)=F(x)+[F(x)-F(0)]=2F(x), | + | <math>F(2x)=F(x)+[F(x)-F(0)]=2F(x)</math>, |
− | F(3x)=F(2x)+[F(2x)-F(x)]=3F(x). | + | <math>F(3x)=F(2x)+[F(2x)-F(x)]=3F(x)</math>. |
− | Easily, by induction, F(nx)=nF(x) for all integers | + | Easily, by induction, <math>F(nx)=nF(x)</math> for all integers <math>n</math>. |
− | Therefore, for nonzero integer m, (1/m)F(mx)=F(x) , namely F(x/m)=(1/m)F(x) | + | Therefore, for nonzero integer m, <math>(1/m)F(mx)=F(x)</math> , namely <math>F(x/m)=(1/m)F(x)</math> |
− | Hence F(n/m)=(n/m)F(1). Let F(1)=k, we obtain F(x)=kx, where k is the slope of the linear functions, and f(x)=kx+C. | + | Hence <math>F(n/m)=(n/m)F(1)</math>. Let <math>F(1)=k</math>, we obtain <math>F(x)=kx</math>, where <math>k</math> is the slope of the linear functions, and <math>f(x)=kx+C</math>. |
+ | |||
+ | ===Solution 2=== | ||
+ | We have <cmath>f(x-3d)+f(x+3d)=f(x-d)+f(x+d)</cmath> and <cmath>f(x)+f(x+3d)=f(x+d)+f(x+2d).</cmath> Subtracting these two and rearranging gives <cmath>f(x-3d)+f(x+2d)=f(x)+f(x-d),</cmath> and since <math>f(x+2d)=f(x+d)+f(x)-f(x-d)</math> we get <cmath>f(x-3d)+f(x+d)=2f(x-d)</cmath> from which we get <cmath>f(x-d)+f(x+d)=2f(x).</cmath> Then we have <math>f(x)+f(y)=f(0)+f(x+y)=2f\left(\frac{x+y}{2}\right)</math>. Setting <math>f(0)=c</math>, we let <math>f(x)=g(x)+c</math> to get <math>g(x)+g(y)=g(x+y)</math>. This is Cauchy's functional equation, so it has solutions at <math>g(x)=kx</math>, so the answer is <math>\boxed{f(x)=kx+c}</math>. | ||
+ | |||
+ | [[Category:Olympiad Algebra Problems]] | ||
+ | [[Category:Functional Equation Problems]] |
Latest revision as of 16:55, 26 September 2021
Problem
Find all functions such thatfor all rational numbers that form an arithmetic progression. ( is the set of all rational numbers.)
Solution 1
According to the given, , where x and a are rational. Likewise . Hence , namely . Let , then consider , where .
, . Easily, by induction, for all integers . Therefore, for nonzero integer m, , namely Hence . Let , we obtain , where is the slope of the linear functions, and .
Solution 2
We have and Subtracting these two and rearranging gives and since we get from which we get Then we have . Setting , we let to get . This is Cauchy's functional equation, so it has solutions at , so the answer is .