Difference between revisions of "2016 AMC 12A Problems/Problem 21"

(Solution)
(Redirected to matching 12A problem)
 
(6 intermediate revisions by one other user not shown)
Line 1: Line 1:
==Problem==
+
#REDIRECT [[2016_AMC_10A_Problems/Problem_24]]
A quadrilateral is inscribed in a circle of radius <math>200\sqrt{2}.</math> Three of the sides of this quadrilateral have length <math>200.</math> What is the length of its fourth side?
 
 
 
<math>\textbf{(A)}\ 200\qquad\textbf{(B)}\ 200\sqrt{2} \qquad\textbf{(C)}\ 200\sqrt{3} \qquad\textbf{(D)}\ 300\sqrt{2} \qquad\textbf{(E)}\ 500</math>
 
==Solution==
 
 
 
<asy>
 
pathpen = black; pointpen = black;
 
size(6cm);
 
draw(unitcircle);
 
pair A = D("A", dir(50), dir(50));
 
pair B = D("B", dir(90), dir(90));
 
pair C = D("C", dir(130), dir(130));
 
pair D = D("D", dir(170), dir(170));
 
pair O = D("O", (0,0), dir(-90));
 
draw(A--C, red);
 
draw(B--D, blue+dashed);
 
draw(A--B--C--D--cycle);
 
draw(A--O--C);
 
draw(O--B);
 
</asy>
 
 
 
Let <math>s = 200</math>.  Let <math>O</math> be the center of the circle.  Then <math>AC</math> is twice the altitude of <math>\triangle OBC</math>.  Since <math>\triangle OBC</math> is isosceles we can compute its area to be <math>s^2 \sqrt7/4</math>, hence <math>CA = 2 \tfrac{2 \cdot s^2\sqrt7/4}{s\sqrt2} = s\sqrt{7/2}</math>.
 
 
 
Now by Ptolemy's Theorem we have <math>CA^2 = s^2 + AD \cdot s \implies AD = (7/2-1)s = 500</math>.
 

Latest revision as of 12:36, 5 February 2016