Difference between revisions of "2006 AIME A Problems/Problem 12"

(Redirected page to 2006 AIME I Problems/Problem 12)
 
(5 intermediate revisions by 3 users not shown)
Line 1: Line 1:
== Problem ==
+
#REDIRECT [[2006 AIME I Problems/Problem 12]]
Equilateral <math> \triangle ABC </math> is inscribed in a circle of radius 2. Extend <math> \overline{AB} </math> through <math> B </math> to point <math> D </math> so that <math> AD=13, </math> and extend <math> \overline{AC} </math> through <math> C </math> to point <math> E </math> so that <math> AE = 11. </math> Through <math> D, </math> draw a line <math> l_1 </math> parallel to <math> \overline{AE}, </math> and through <math> E, </math> draw a line <math> l_2 </math> parallel to <math> \overline{AD}. </math> Let <math> F </math> be the intersection of <math> l_1 </math> and <math> l_2. </math> Let <math> G </math> be the point on the circle that is collinear with <math> A </math> and <math> F </math> and distinct from <math> A. </math> Given that the area of <math> \triangle CBG </math> can be expressed in the form <math> \frac{p\sqrt{q}}{r}, </math>  where <math> p, q, </math> and <math> r </math> are positive integers, <math> p </math> and <math> r</math>  are relatively prime, and <math> q </math> is not divisible by the square of any prime, find <math> p+q+r. </math>
 
{{image needed}}
 
 
 
== Solution ==
 
 
 
== See also ==
 
*[[2006 AIME II Problems]]
 
 
 
[[Category:Intermediate Geometry Problems]]
 

Latest revision as of 10:15, 28 June 2009