Difference between revisions of "1977 AHSME Problems/Problem 9"
(Created page with "==Solution== Solution by e_power_pi_times_i If arcs <math>AB</math>, <math>BC</math>, and <math>CD</math> are congruent, then <math>\measuredangle ACB = \measuredangle BDC =...") |
m (→Problem 9) |
||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
+ | |||
+ | |||
+ | == Problem 9 == | ||
+ | |||
+ | <asy> | ||
+ | size(120); | ||
+ | path c = Circle((0, 0), 1); | ||
+ | pair A = dir(20), B = dir(130), C = dir(240), D = dir(330); | ||
+ | draw(c); | ||
+ | pair F = 3(A-B) + B; | ||
+ | pair G = 3(D-C) + C; | ||
+ | pair E = intersectionpoints(B--F, C--G)[0]; | ||
+ | draw(B--E--C--A); | ||
+ | label("$A$", A, NE); | ||
+ | label("$B$", B, NW); | ||
+ | label("$C$", C, SW); | ||
+ | label("$D$", D, SE); | ||
+ | label("$E$", E, E); | ||
+ | //Credit to MSTang for the diagram | ||
+ | </asy> | ||
+ | |||
+ | |||
+ | In the adjoining figure <math>\measuredangle E=40^\circ</math> and arc <math>AB</math>, arc <math>BC</math>, and arc <math>CD</math> all have equal length. Find the measure of <math>\measuredangle ACD</math>. | ||
+ | |||
+ | <math>\textbf{(A) }10^\circ\qquad | ||
+ | \textbf{(B) }15^\circ\qquad | ||
+ | \textbf{(C) }20^\circ\qquad | ||
+ | \textbf{(D) }\left(\frac{45}{2}\right)^\circ\qquad | ||
+ | \textbf{(E) }30^\circ </math> | ||
+ | |||
+ | |||
==Solution== | ==Solution== | ||
Solution by e_power_pi_times_i | Solution by e_power_pi_times_i | ||
If arcs <math>AB</math>, <math>BC</math>, and <math>CD</math> are congruent, then <math>\measuredangle ACB = \measuredangle BDC = \measuredangle CBD = \theta</math>. Because <math>ABCD</math> is cyclic, <math>\measuredangle CAD = \measuredangle CBD = \theta</math>, and <math>\measuredangle ADB = \measuredangle ACB = \theta</math>. Then, <math>\measuredangle EAD = \measuredangle EDA = \dfrac{180^\circ - 40^\circ}{2} = 70^\circ</math>. <math>\theta = 55^\circ</math>. <math>\measuredangle ACD = 180^\circ - 55^\circ - 110^\circ = \boxed{\textbf{(B) }15^\circ}</math>. | If arcs <math>AB</math>, <math>BC</math>, and <math>CD</math> are congruent, then <math>\measuredangle ACB = \measuredangle BDC = \measuredangle CBD = \theta</math>. Because <math>ABCD</math> is cyclic, <math>\measuredangle CAD = \measuredangle CBD = \theta</math>, and <math>\measuredangle ADB = \measuredangle ACB = \theta</math>. Then, <math>\measuredangle EAD = \measuredangle EDA = \dfrac{180^\circ - 40^\circ}{2} = 70^\circ</math>. <math>\theta = 55^\circ</math>. <math>\measuredangle ACD = 180^\circ - 55^\circ - 110^\circ = \boxed{\textbf{(B) }15^\circ}</math>. |
Latest revision as of 11:30, 21 November 2016
Problem 9
In the adjoining figure and arc , arc , and arc all have equal length. Find the measure of .
Solution
Solution by e_power_pi_times_i
If arcs , , and are congruent, then . Because is cyclic, , and . Then, . . .