Difference between revisions of "2017 AMC 12B Problems/Problem 16"
(Created page with "If a factor of <math>21!</math> is odd, that means it contains no factors of <math>2</math>. We can find the number of factors of two in <math>21!</math> by counting the numbe...") |
Happyhippos (talk | contribs) |
||
(28 intermediate revisions by 13 users not shown) | |||
Line 1: | Line 1: | ||
− | If a factor of <math>21!</math> is odd, that means it contains no factors of <math>2</math>. We can find the number of factors of two in <math>21!</math> by counting the number multiples of <math>2</math>, <math>4</math>, <math>8</math>, and <math>16</math> that are less than or equal to <math>21</math>.After some quick counting we find that this number is <math>10+5+2+1 = 18</math>. If the prime factorization of <math>21!</math> has <math>18</math> factors of <math>2</math>, there are <math>19</math> choices for each divisor for how many factors of <math>2</math> should be included (<math>0</math> to <math>18</math> inclusive). The probability that a randomly chosen factor is odd is the same as if the number of factors of <math>2</math> is <math>0</math> which is <math>\frac{1}{19} \ | + | ==Problem== |
+ | The number <math>21!=51,090,942,171,709,440,000</math> has over <math>60,000</math> positive integer divisors. One of them is chosen at random. What is the probability that it is odd? | ||
+ | |||
+ | <math>\textbf{(A)}\ \frac{1}{21} \qquad \textbf{(B)}\ \frac{1}{19} \qquad \textbf{(C)}\ \frac{1}{18} \qquad \textbf{(D)}\ \frac{1}{2} \qquad \textbf{(E)}\ \frac{11}{21}</math> | ||
+ | |||
+ | ==Solution 1== | ||
+ | |||
+ | We can consider a factor of <math>21!</math> to be odd if it does not contain a <math>2</math>; hence, finding the exponent of <math>2</math> in the prime factorization of <math>21!</math> will help us find our answer. We can start off with all multiples of <math>2</math> up to <math>21</math>, which is <math>10</math>. Then, we find multiples of <math>4</math>, which is <math>5</math>. Next, we look at multiples of <math>8</math>, of which there are <math>2</math>. Finally, we know there is only one multiple of <math>16</math> in the set of positive integers up to <math>21</math>. Now, we can add all of these to get <math>10+5+2+1=18</math>. We know that, in the prime factorization of <math>21!</math>, we have <math>2^{18}</math>, and the only way to have an odd number is if there is not a <math>2</math> in that number's prime factorization. This only happens with <math>2^{0}</math>, which is only one of the 19 different exponents of 2 we could have (of which having each exponent is equally likely). Hence, we have <math>\boxed{\text{(B)} \dfrac{1}{19}}.</math> | ||
+ | |||
+ | Solution by: armang32324 | ||
+ | |||
+ | ==Solution 2== | ||
+ | |||
+ | If <math>21!</math> prime factorizes into <math>p</math> prime factors with exponents <math>e_1</math> through <math>e_k</math>, then the product of the sums of each of these exponents plus <math>1</math> should be over <math>60,000</math>. If <math>e_2</math> is the exponent of <math>2</math> in the prime factorization of 21!, then we can find the number of odd factors of <math>21!</math> by dividing the total by <math>e_2+1</math>. Then, the number of odd divisors over total divisors is <math>\dfrac{1}{e_2+1}</math>. We can find <math>e_2</math> easily using Legendre's, so our final answer is <math>\dfrac{1}{10 + 5 + 2 + 1+1} = \boxed{\text{(B)} \dfrac{1}{19}}.</math> | ||
+ | |||
+ | ~ icecreamrolls8 | ||
+ | |||
+ | ==Solution 3== | ||
+ | If a factor of <math>21!</math> is odd, that means it contains no factors of <math>2</math>. We can find the number of factors of two in <math>21!</math> by counting the number multiples of <math>2</math>, <math>4</math>, <math>8</math>, and <math>16</math> that are less than or equal to <math>21</math> (Legendre's Formula). After some quick counting we find that this number is <math>10+5+2+1 = 18</math>. If the prime factorization of <math>21!</math> has <math>18</math> factors of <math>2</math>, there are <math>19</math> choices for each divisor for how many factors of <math>2</math> should be included (<math>0</math> to <math>18</math> inclusive). The probability that a randomly chosen factor is odd is the same as if the number of factors of <math>2</math> is <math>0</math> which is <math>\boxed{\textbf{(B)}\frac{1}{19}}</math>. | ||
+ | |||
+ | Solution by: vedadehhc | ||
+ | |||
+ | Note: Legendre's Formula states that the exponent of <math>p</math> in the prime factorization of <math>n!</math> is given by | ||
+ | <cmath>e_p(n!)=\sum_{i=1}^{\infty}\left\lfloor\frac{n}{p^i}\right\rfloor=\frac{n-S_p(n)}{p-1},</cmath> | ||
+ | where <math>S_p(n)</math> is the sum of the digits of <math>n</math> when written in base <math>p</math>. For example, <math>21</math> in binary is <math>1011</math>, so <math>S_2(21)=1+0+1+1=3</math>. We have <math>e_2(21!)=\frac{21-3}{2-1}=18</math>, then proceed with the rest of solution 3. | ||
+ | |||
+ | ~ happyhippos | ||
+ | |||
+ | ==Solution 4== | ||
+ | We can write <math>21!</math> as its prime factorization: | ||
+ | <cmath>21!=2^{18}\times3^9\times5^4\times7^3\times11\times13\times17\times19</cmath> | ||
+ | |||
+ | Each exponent of these prime numbers are one less than the number of factors at play here. This makes sense; <math>2^{18}</math> is going to have <math>19</math> factors: <math>2^0, 2^1, 2^2,...\text{ }2^{18}</math>, and the other exponents will behave identically. | ||
+ | |||
+ | In other words, <math>21!</math> has <math>(18+1)(9+1)(4+1)(3+1)(1+1)(1+1)(1+1)(1+1)</math> factors. | ||
+ | |||
+ | We are looking for the probability that a randomly chosen factor of <math>21!</math> will be odd--numbers that do not contain multiples of <math>2</math> as factors. | ||
+ | |||
+ | From our earlier observation, the only factors of <math>21!</math> that are even are ones with at least one multiplier of <math>2</math>, so our probability of finding an odd factor becomes the following: | ||
+ | <cmath>P(\text{odd})=\dfrac{\text{number of odd factors}}{\text{number of all factors}}=\dfrac{(9+1)(4+1)(3+1)(1+1)(1+1)(1+1)(1+1)}{(18+1)(9+1)(4+1)(3+1)(1+1)(1+1)(1+1)(1+1)}=\dfrac{1}{(18+1)}=\boxed{\dfrac{1}{19}}</cmath> | ||
+ | |||
+ | Solution submitted by [[User:TrueshotBarrage|David Kim]] | ||
+ | |||
+ | ==Video Solution== | ||
+ | |||
+ | https://youtu.be/ZLHNTSIcGM8 | ||
+ | |||
+ | -MistyMathMusic | ||
+ | |||
+ | ==See Also== | ||
+ | {{AMC12 box|year=2017|ab=B|num-b=15|num-a=17}} | ||
+ | {{MAA Notice}} | ||
+ | |||
+ | [[Category:Introductory Combinatorics Problems]] | ||
+ | [[Category:Introductory Probability Problems]] |
Latest revision as of 23:43, 8 November 2024
Problem
The number has over positive integer divisors. One of them is chosen at random. What is the probability that it is odd?
Solution 1
We can consider a factor of to be odd if it does not contain a ; hence, finding the exponent of in the prime factorization of will help us find our answer. We can start off with all multiples of up to , which is . Then, we find multiples of , which is . Next, we look at multiples of , of which there are . Finally, we know there is only one multiple of in the set of positive integers up to . Now, we can add all of these to get . We know that, in the prime factorization of , we have , and the only way to have an odd number is if there is not a in that number's prime factorization. This only happens with , which is only one of the 19 different exponents of 2 we could have (of which having each exponent is equally likely). Hence, we have
Solution by: armang32324
Solution 2
If prime factorizes into prime factors with exponents through , then the product of the sums of each of these exponents plus should be over . If is the exponent of in the prime factorization of 21!, then we can find the number of odd factors of by dividing the total by . Then, the number of odd divisors over total divisors is . We can find easily using Legendre's, so our final answer is
~ icecreamrolls8
Solution 3
If a factor of is odd, that means it contains no factors of . We can find the number of factors of two in by counting the number multiples of , , , and that are less than or equal to (Legendre's Formula). After some quick counting we find that this number is . If the prime factorization of has factors of , there are choices for each divisor for how many factors of should be included ( to inclusive). The probability that a randomly chosen factor is odd is the same as if the number of factors of is which is .
Solution by: vedadehhc
Note: Legendre's Formula states that the exponent of in the prime factorization of is given by where is the sum of the digits of when written in base . For example, in binary is , so . We have , then proceed with the rest of solution 3.
~ happyhippos
Solution 4
We can write as its prime factorization:
Each exponent of these prime numbers are one less than the number of factors at play here. This makes sense; is going to have factors: , and the other exponents will behave identically.
In other words, has factors.
We are looking for the probability that a randomly chosen factor of will be odd--numbers that do not contain multiples of as factors.
From our earlier observation, the only factors of that are even are ones with at least one multiplier of , so our probability of finding an odd factor becomes the following:
Solution submitted by David Kim
Video Solution
-MistyMathMusic
See Also
2017 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 15 |
Followed by Problem 17 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.