Difference between revisions of "Mock AIME 2 2006-2007 Problems/Problem 10"
m |
m (→Solution) |
||
(8 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | Find the number of solutions, in degrees, to the equation <math> | + | Find the number of solutions, in degrees, to the equation <math>\sin^{10}x + \cos^{10}x = \frac{29}{16}\cos^4 2x,</math> where <math>0^\circ \le x^\circ \le 2007^\circ.</math> |
==Solution== | ==Solution== | ||
− | + | We know <math>\cos2x=2\cos^2x-1=1-2\sin^2x</math> | |
− | - | + | So, <math>\sin^{10}x+\cos^{10}x=\left(\frac{1-\cos2x}2\right)^5+\left(\frac{1+\cos2x}2\right)^5</math> <math>=\frac{2(1+\binom52\cos^22x+\binom 54\cos^42x)}{32}</math> |
− | + | So, <math>\frac{1+10\cos^22x+5\cos^42x}{16}=\frac{29}{16}\cos^42x</math> | |
− | + | On Simplification, <math>24\cos^42x-10\cos^22x-1=0</math> which is a quadratic equation in <math>\cos^22x</math> | |
− | + | So, <math>\cos^22x=\frac{10\pm \sqrt{10^2-4\cdot24\cdot(-1)}}{2\cdot24}=\frac12</math> or <math>-\frac1{12}</math> | |
+ | |||
+ | As <math>x</math> is real, <math>0\le\cos^22x\le1\implies \cos^22x=\frac12\implies 2\cos^22x=1</math> | ||
+ | |||
+ | Hence, <math>\cos4x=0\implies 4x=(2n+1)90</math> or <math>x=(2n+1)22.5</math> where <math>n</math> is any integer. | ||
+ | |||
+ | So, <math>0\le \frac{(2n+1)90}4\le2007\implies -\frac12\le n\le \frac{882}{20}=44.1\implies 0\le n\le44</math> | ||
+ | |||
+ | ==See Also== | ||
+ | {{Mock AIME box|year=2006-2007|n=2|num-b=9|num-a=11}} |
Latest revision as of 23:09, 1 February 2013
Problem
Find the number of solutions, in degrees, to the equation where
Solution
We know
So,
So,
On Simplification, which is a quadratic equation in
So, or
As is real,
Hence, or where is any integer.
So,
See Also
Mock AIME 2 2006-2007 (Problems, Source) | ||
Preceded by Problem 9 |
Followed by Problem 11 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 |