Difference between revisions of "Mock AIME 2 2006-2007 Problems/Problem 11"

m
(Solution)
 
(12 intermediate revisions by 4 users not shown)
Line 2: Line 2:
 
Find the sum of the squares of the roots, real or complex, of the system of simultaneous equations
 
Find the sum of the squares of the roots, real or complex, of the system of simultaneous equations
  
<math>\displaystyle x+y+z=3,~x^2+y^2+z^2=3,~x^3+y^3+z^3 =3.</math>
+
<math>x+y+z=3,~x^2+y^2+z^2=3,~x^3+y^3+z^3 =3.</math>
  
 
==Solution==
 
==Solution==
{{solution}}
+
The roots are <math>x</math>, <math>y</math>, and <math>z</math>, and we add the squares:
  
----
+
<cmath>x^2+y^2+z^2=\boxed{003}</cmath>
  
*[[Mock AIME 2 2006-2007/Problem 10 | Previous Problem]]
+
==See Also==
 
+
http://www.artofproblemsolving.com/Wiki/index.php/1973_USAMO_Problems/Problem_4
*[[Mock AIME 2 2006-2007/Problem 12 | Next Problem]]
+
{{Mock AIME box|year=2006-2007|n=2|num-b=10|num-a=12}}
 
 
*[[Mock AIME 2 2006-2007]]
 
 
 
 
 
 
 
== Problem Source==
 
This problem was given to 4everwise by a friend, Henry Tung. Upper classmen bullying freshmen. (Just kidding; it's a nice problem. [[Image:Razz.gif]])
 

Latest revision as of 20:55, 20 October 2019

Problem

Find the sum of the squares of the roots, real or complex, of the system of simultaneous equations

$x+y+z=3,~x^2+y^2+z^2=3,~x^3+y^3+z^3 =3.$

Solution

The roots are $x$, $y$, and $z$, and we add the squares:

\[x^2+y^2+z^2=\boxed{003}\]

See Also

http://www.artofproblemsolving.com/Wiki/index.php/1973_USAMO_Problems/Problem_4

Mock AIME 2 2006-2007 (Problems, Source)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15