Difference between revisions of "2007 AMC 10B Problems/Problem 18"

m (Solution 2)
(Solution 2)
 
(One intermediate revision by the same user not shown)
Line 28: Line 28:
 
==Solution 1==
 
==Solution 1==
  
You can express the line connecting the centers of an outer circle and the inner circle in two different ways. You can add the radius of both circles to get <math>r+1.</math> You can also add the radius of two outer circles and use a <math>45-45-90</math> triangle to get <math>\frac{2r}{\sqrt{2}} = r\sqrt{2}.</math> Since both representations are for the same thing, you can set them equal to each other.
+
You can express the line connecting the centers of an outer circle and the inner circle in two different ways. You can add the radius of both circles to get <math>r+1.</math> You can also add the radius of two outer circles and use a <math>45-45-90</math> triangle to get <math>\frac{2r}{\sqrt{2}} = r\sqrt{2}.</math> Since both expressions represent the same length, you can set them equal to each other.
 
<cmath>\begin{align*}
 
<cmath>\begin{align*}
 
r+1&=r\sqrt{2}\\
 
r+1&=r\sqrt{2}\\
Line 36: Line 36:
 
==Solution 2==
 
==Solution 2==
  
You can solve this problem by setting up a simple equation with the Pythagorean Theorem. The hypotenuse would be a segment that includes the radius of two circles on opposite corners and the diameter of the middle circle. This results in a segment of length <math>2r+2</math>. The two legs are each the length between the centers of two large, adjacent circles, thus <math>2r</math>.  
+
You can solve this problem by setting up a simple equation with the Pythagorean Theorem. The hypotenuse would be a segment that includes the radius of two circles on opposite corners and the diameter of the middle circle. This results in a segment of length <math>2r+2</math>. The two legs are each the length between the centers of two large, adjacent circles, thus they are each equal to <math>2r</math>.  
 
Using the Pythagorean Theorem:
 
Using the Pythagorean Theorem:
 
<cmath>\begin{align*}
 
<cmath>\begin{align*}

Latest revision as of 13:17, 4 June 2021

Problem

A circle of radius $1$ is surrounded by $4$ circles of radius $r$ as shown. What is $r$?

[asy] unitsize(5mm); defaultpen(linewidth(.8pt)+fontsize(7pt)); dotfactor=4;  real r1=1, r2=1+sqrt(2); pair A=(0,0), B=(1+sqrt(2),1+sqrt(2)), C=(-1-sqrt(2),1+sqrt(2)), D=(-1-sqrt(2),-1-sqrt(2)), E=(1+sqrt(2),-1-sqrt(2)); pair A1=(1,0), B1=(2+2sqrt(2),1+sqrt(2)), C1=(0,1+sqrt(2)), D1=(0,-1-sqrt(2)), E1=(2+2sqrt(2),-1-sqrt(2)); path circleA=Circle(A,r1); path circleB=Circle(B,r2); path circleC=Circle(C,r2); path circleD=Circle(D,r2); path circleE=Circle(E,r2); draw(circleA); draw(circleB); draw(circleC); draw(circleD); draw(circleE); draw(A--A1); draw(B--B1); draw(C--C1); draw(D--D1); draw(E--E1);  label("$1$",midpoint(A--A1),N); label("$r$",midpoint(B--B1),N); label("$r$",midpoint(C--C1),N); label("$r$",midpoint(D--D1),N); label("$r$",midpoint(E--E1),N); [/asy]

$\textbf{(A) } \sqrt{2} \qquad\textbf{(B) } 1+\sqrt{2} \qquad\textbf{(C) } \sqrt{6} \qquad\textbf{(D) } 3 \qquad\textbf{(E) } 2+\sqrt{2}$

Solutions

Solution 1

You can express the line connecting the centers of an outer circle and the inner circle in two different ways. You can add the radius of both circles to get $r+1.$ You can also add the radius of two outer circles and use a $45-45-90$ triangle to get $\frac{2r}{\sqrt{2}} = r\sqrt{2}.$ Since both expressions represent the same length, you can set them equal to each other. \begin{align*} r+1&=r\sqrt{2}\\ 1&=r(\sqrt{2}-1)\end{align*} \[r = \frac{1}{\sqrt{2}-1} = \frac{1(\sqrt{2}+1)}{(\sqrt{2}-1)(\sqrt{2}+1)} = \frac{\sqrt{2}+1}{2-1} = \boxed{\mathrm{(B) \ } 1 + \sqrt{2}}\]

Solution 2

You can solve this problem by setting up a simple equation with the Pythagorean Theorem. The hypotenuse would be a segment that includes the radius of two circles on opposite corners and the diameter of the middle circle. This results in a segment of length $2r+2$. The two legs are each the length between the centers of two large, adjacent circles, thus they are each equal to $2r$. Using the Pythagorean Theorem: \begin{align*} (2r+2)^2 = 2(2r)^2\\ 4r^2+8r+4=8r^2\\ r^2+2r+1=2r^2\\ r^2-2r-1=0\\ r=\frac{2+\sqrt{4-(-4)}}{2}=\frac{2+2\sqrt{2}}{2}=\boxed{\mathrm{(B) \ } 1 + \sqrt{2}} \end{align*}

See Also

2007 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png