Difference between revisions of "2019 AMC 10B Problems/Problem 15"

Line 1: Line 1:
Don't go breaking my heart
+
Two right triangles, <math>T_1</math> and <math>T_2</math>, have areas of 1 and 2, respectively. One side length of one triangle is congruent to a different side length in the other, and another side length of the first triangle is congruent to yet another side length in the other. What is the product of the third side lengths of <math>T_1</math> and <math>T_2</math>?
 +
 
 +
<math>\textbf{(A) }\frac{28}{3}\qquad\textbf{(B) }10\qquad\textbf{(C) }\frac{32}{3}\qquad\textbf{(D) }\frac{34}{3}\qquad\textbf{(E) }12</math>

Revision as of 12:49, 14 February 2019

Two right triangles, $T_1$ and $T_2$, have areas of 1 and 2, respectively. One side length of one triangle is congruent to a different side length in the other, and another side length of the first triangle is congruent to yet another side length in the other. What is the product of the third side lengths of $T_1$ and $T_2$?

$\textbf{(A) }\frac{28}{3}\qquad\textbf{(B) }10\qquad\textbf{(C) }\frac{32}{3}\qquad\textbf{(D) }\frac{34}{3}\qquad\textbf{(E) }12$