Difference between revisions of "1981 IMO Problems/Problem 6"
m |
m (→Solution: matho) |
||
Line 17: | Line 17: | ||
We continue with <math>\displaystyle f(3,0) + 3 = 8 </math>; <math>\displaystyle f(3, y+1) + 3 = 2(f(3,y) + 3)</math>; <math>\displaystyle f(3,y) + 3 = 2^{y+3}</math>; and <math>\displaystyle f(4,0) + 3 = 2^{2^2}</math>; <math>\displaystyle f(4,y) + 3 = 2^{f(4,y) + 3}</math>. | We continue with <math>\displaystyle f(3,0) + 3 = 8 </math>; <math>\displaystyle f(3, y+1) + 3 = 2(f(3,y) + 3)</math>; <math>\displaystyle f(3,y) + 3 = 2^{y+3}</math>; and <math>\displaystyle f(4,0) + 3 = 2^{2^2}</math>; <math>\displaystyle f(4,y) + 3 = 2^{f(4,y) + 3}</math>. | ||
− | It follows that <math>\displaystyle f(4,1981) = 2^{2\cdot ^{ . \cdot 2}}</math> when there are 1984 2s, Q.E.D. | + | It follows that <math>\displaystyle f(4,1981) = 2^{2\cdot ^{ . \cdot 2}} - 3 </math> when there are 1984 2s, Q.E.D. |
{{alternate solutions}} | {{alternate solutions}} |
Revision as of 16:39, 29 October 2006
Problem
The function satisfies
(1)
(2)
(3)
for all non-negative integers . Determine .
Solution
We observe that and that , so by induction, . Similarly, and , yielding .
We continue with ; ; ; and ; .
It follows that when there are 1984 2s, Q.E.D.
Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.