|
|
Line 1: |
Line 1: |
− | ==Problem==
| + | #REDIRECT [[2014 USAMO Problems/Problem 2]] |
− | Let <math>\mathbb{Z}</math> be the set of integers. Find all functions <math>f : \mathbb{Z} \rightarrow \mathbb{Z}</math> such that <cmath>xf(2f(y)-x)+y^2f(2x-f(y))=\frac{f(x)^2}{x}+f(yf(y))</cmath> for all <math>x, y \in \mathbb{Z}</math> with <math>x \neq 0</math>.
| |
− | | |
− | ==Solution==
| |
− | | |
− | Let's assume <math>f(0)\neq 0.</math> Substitute <math>(x,y)=(2f(0),0)</math> to get <cmath>2f(0)^2=f(2f(0))^2/2f(0)+f(0)</cmath>
| |
− | <cmath>2f(0)^2(2f(0)-1)=f(2f(0))^2</cmath>
| |
− | | |
− | This means that <math>2(2f(0)-1)</math> is a perfect square. However, this is impossible, as it is equivalent to <math>2\pmod{4}.</math> Therefore, <math>f(0)=0.</math> Now substitute <math>x\neq 0, y=0</math> to get <cmath>xf(-x)=\frac{f(x)^2}{x} \implies x^2f(-x)=f(x)^2.</cmath>
| |
− | Similarly, <cmath>x^2f(x)=f(-x)^2.</cmath>
| |
− | From these two equations, we can find either <math>f(x)=f(-x)=0,</math> or <math>f(x)=f(-x)=x^2.</math> Both of these are valid solutions on their own, so let's see if there are any solutions combining the two.
| |
− | | |
− | Let's say we can find <math>f(x)=x^2, f(y)=0,</math> and <math>x,y\neq 0.</math> Then <cmath>xf(-x)+y^2f(2x)=f(x)^2/x.</cmath>
| |
− | <cmath>y^2f(2x)=x-x^3.</cmath> (NEEDS FIXING: <math>f(x)^2/x= x^4/x = x^3</math>, so the RHS is <math>0</math> instead of <math>x-x^3</math>.)
| |
− | | |
− | If <math>f(2x)=4x^2,</math> then <math>y^2=\frac{x-x^3}{4x^2}=\frac{1-x^2}{4x},</math> which is only possible when <math>y=0.</math> This contradicts our assumption. Therefore, <math>f(2x)=0.</math> This forces <math>x=\pm 1</math> due to the right side of the equation. Let's consider the possibility <math>f(2)=0, f(1)=1.</math> Substituting <math>(x,y)=(2,1)</math> into the original equation yields <cmath>0=2f(0)+1f(2)=0+f(1)=1,</cmath> which is impossible. So <math>f(2)=f(-2)=4</math> and there are no solutions "combining" <math>f(x)=x^2</math> and <math>f(x)=0.</math>
| |
− | | |
− | Therefore our only solutions are <math>\boxed{f(x)=0}</math> and <math>\boxed{f(x)=x^2.}</math>
| |