Difference between revisions of "Factorial"
(problems) |
|||
Line 1: | Line 1: | ||
The '''factorial''' is an important function in [[combinatorics]] and [[analysis]], used to determine the number of ways to arrange objects. | The '''factorial''' is an important function in [[combinatorics]] and [[analysis]], used to determine the number of ways to arrange objects. | ||
− | + | == Definition == | |
The factorial is defined for [[positive integer]]s as <math>n!=n \cdot (n-1) \cdots 2 \cdot 1 = \prod_{i=1}^n i</math>. Alternatively, a [[recursion|recursive definition]] for the factorial is <math>n!=n \cdot (n-1)!</math>. | The factorial is defined for [[positive integer]]s as <math>n!=n \cdot (n-1) \cdots 2 \cdot 1 = \prod_{i=1}^n i</math>. Alternatively, a [[recursion|recursive definition]] for the factorial is <math>n!=n \cdot (n-1)!</math>. | ||
− | + | == Additional Information == | |
By [[mathematical convention|convention]], <math>0!</math> is given the value <math>1</math>. | By [[mathematical convention|convention]], <math>0!</math> is given the value <math>1</math>. | ||
Line 11: | Line 11: | ||
The [[gamma function]] is a generalization of the factorial to values other than [[nonnegative integer]]s. | The [[gamma function]] is a generalization of the factorial to values other than [[nonnegative integer]]s. | ||
− | == | + | ==Prime Factorization== |
− | + | {{main|Prime factorization}} | |
Since <math>n!</math> is the product of all positive integers not exceeding <math>n</math>, it is clear that it is divisible by all | Since <math>n!</math> is the product of all positive integers not exceeding <math>n</math>, it is clear that it is divisible by all | ||
primes <math>p\le n</math>, and not divisible by any prime <math>p>n</math>. But what is the power of a prime <math>p\le n</math> | primes <math>p\le n</math>, and not divisible by any prime <math>p>n</math>. But what is the power of a prime <math>p\le n</math> | ||
Line 27: | Line 27: | ||
(<math>7^3=343</math> is already greater than <math>100</math>). | (<math>7^3=343</math> is already greater than <math>100</math>). | ||
− | + | == Uses == | |
The factorial is used in the definitions of [[combinations]] and [[permutations]], as <math>n!</math> is the number of ways to order <math>n</math> distinct objects. | The factorial is used in the definitions of [[combinations]] and [[permutations]], as <math>n!</math> is the number of ways to order <math>n</math> distinct objects. | ||
− | === | + | ==Problems== |
+ | ===Introductory=== | ||
+ | *{[{intro}}} | ||
+ | ([[2007 iTest Problems/Problem 6|Source]]) | ||
+ | ===Intermediate=== | ||
+ | *Let <math>P </math> be the product of the first <math>100</math> [[positive integer | positive]] [[odd integer]]s. Find the largest integer <math>k </math> such that <math>P </math> is divisible by <math>3^k .</math> | ||
+ | ([[2006 AIME II Problems/Problem 3|Source]]) | ||
+ | ===Olympiad=== | ||
+ | *Let <math>p_n (k) </math> be the number of permutations of the set <math>\{ 1, \ldots , n \} , \; n \ge 1 </math>, which have exactly <math>k </math> fixed points. Prove that <center><math>\sum_{k=0}^{n} k \cdot p_n (k) = n!</math>.</center> | ||
+ | ([[1987 IMO Problems/Problem 1|Source]]) | ||
− | |||
− | |||
− | === See | + | === See Also == |
*[[Combinatorics]] | *[[Combinatorics]] | ||
+ | |||
+ | [[Category:Combinatorics]] |
Revision as of 22:00, 14 January 2008
The factorial is an important function in combinatorics and analysis, used to determine the number of ways to arrange objects.
Contents
[hide]Definition
The factorial is defined for positive integers as . Alternatively, a recursive definition for the factorial is
.
Additional Information
By convention, is given the value
.
The gamma function is a generalization of the factorial to values other than nonnegative integers.
Prime Factorization
- Main article: Prime factorization
Documentation
Use {{hatnote|text}} </noinclude>
Since is the product of all positive integers not exceeding
, it is clear that it is divisible by all
primes
, and not divisible by any prime
. But what is the power of a prime
in the prime factorization of
? We can find it as the sum of powers of
in all the factors
;
but rather than counting the power of
in each factor, we shall count the number of factors divisible by a given power of
. Among the numbers
, exactly
are divisible by
(here
is the floor function). The ones divisible by
give one power of
. The ones divisible by
give another power of
. Those divisible by
give yet another power of
. Continuing in this manner gives
for the power of in the prime factorization of
. The series is formally infinite, but the terms converge to
rapidly, as it is the reciprocal of an exponential function. For example, the power of
in
is just
(
is already greater than
).
Uses
The factorial is used in the definitions of combinations and permutations, as is the number of ways to order
distinct objects.
Problems
Introductory
- {[{intro}}}
(Source)
Intermediate
- Let
be the product of the first
positive odd integers. Find the largest integer
such that
is divisible by
(Source)
Olympiad
- Let
be the number of permutations of the set
, which have exactly
fixed points. Prove that
.
(Source)