Difference between revisions of "Matrix"
(→Transposes) |
|||
Line 8: | Line 8: | ||
<math>A</math> is said to be symmetric if and only if <math>A=A^T</math>. <math>A</math> is said to be hermitian if and only if <math>A=A^*</math>. <math>A</math> is said to be skew symmetric if and only if <math>A=-A^T</math>. <math>A</math> is said to be skew hermitian if and only if <math>A=-A^*</math>. | <math>A</math> is said to be symmetric if and only if <math>A=A^T</math>. <math>A</math> is said to be hermitian if and only if <math>A=A^*</math>. <math>A</math> is said to be skew symmetric if and only if <math>A=-A^T</math>. <math>A</math> is said to be skew hermitian if and only if <math>A=-A^*</math>. | ||
+ | |||
+ | == Vector spaces associated with a matrix == | ||
+ | |||
+ | As already stated before, the columns of <math>A</math> form a subset of <math>F^m</math>. The subspace of <math>F^m</math> generated by these columns is said to be the column space of <math>A</math>, written as <math>C(A)</math>. Similarly, the transposes of the rows form a subset of the vector space <math>F^n</math>. The subspace of <math>F^n</math> generated by these is known as the row space of <math>A</math>, written as <math>R(A)</math>. |
Revision as of 22:15, 4 November 2006
A matrix is a rectangular array of scalars from any field, such that each column belongs to the vector space , where is the number of rows. If a matrix has rows and columns, its order is said to be , and it is written as .
The element in the row and column of is written as . It is more often written as , in which case can be written as .
Transposes
Let be . Then is said to be the transpose of , written as or simply . If A is over the complex field, replacing each element of by its complex conjugate gives us the conjugate transpose of . In other words,
is said to be symmetric if and only if . is said to be hermitian if and only if . is said to be skew symmetric if and only if . is said to be skew hermitian if and only if .
Vector spaces associated with a matrix
As already stated before, the columns of form a subset of . The subspace of generated by these columns is said to be the column space of , written as . Similarly, the transposes of the rows form a subset of the vector space . The subspace of generated by these is known as the row space of , written as .