Difference between revisions of "2020 AMC 12A Problems/Problem 10"

(Created page with "==Solution== Any logarithm in the form <math>\log_{a^b} c = \frac{1}{b} \log_a c</math>.")
 
(Solution)
Line 2: Line 2:
  
 
Any logarithm in the form <math>\log_{a^b} c = \frac{1}{b} \log_a c</math>.
 
Any logarithm in the form <math>\log_{a^b} c = \frac{1}{b} \log_a c</math>.
 +
 +
so <cmath>\log_2{(\log_{2^4}{n})} = \log_{2^2}{(\log_{2^2}{n})}.</cmath>
 +
 +
becomes
 +
 +
<cmath>\log_2{\frac{1}{4}(\log_{2}{n})} = \frac{1}{2}\log_2{\frac{1}{2}(\log_2{n})}.</cmath>

Revision as of 10:27, 1 February 2020

Solution

Any logarithm in the form $\log_{a^b} c = \frac{1}{b} \log_a c$.

so \[\log_2{(\log_{2^4}{n})} = \log_{2^2}{(\log_{2^2}{n})}.\]

becomes

\[\log_2{\frac{1}{4}(\log_{2}{n})} = \frac{1}{2}\log_2{\frac{1}{2}(\log_2{n})}.\]