Difference between revisions of "Minkowski Inequality"

(added link)
m
Line 6: Line 6:
  
 
Notics that if one of <math>r,s</math> is zero, the inequality is equivelant to [[Holder's Inequality]].
 
Notics that if one of <math>r,s</math> is zero, the inequality is equivelant to [[Holder's Inequality]].
 +
 +
 +
{{wikify}}
 +
{{stub}}

Revision as of 16:29, 30 November 2006

Minkowski Inequality states:

Let $r>s$ be a nonzero real number, then for any positive numbers $a_{ij}$, the following inequality holds:

$(\sum_{j=1}^{m}(\sum_{i=1}^{n}a_{ij}^r)^{s/r})^{1/s}\geq (\sum_{i=1}^{n}(\sum_{j=1}^{m}a_{ij}^s)^{r/s})^{1/r}$

Notics that if one of $r,s$ is zero, the inequality is equivelant to Holder's Inequality.


Template:Wikify This article is a stub. Help us out by expanding it.