Difference between revisions of "The Apple Method"

(Examples)
(Examples)
Line 3: Line 3:
 
==Examples==
 
==Examples==
 
Evaluate: <cmath>\sqrt{6+\sqrt{6+\sqrt{6+\cdots}}}</cmath>
 
Evaluate: <cmath>\sqrt{6+\sqrt{6+\sqrt{6+\cdots}}}</cmath>
\emph{Solution:}
 
  
If we set <math>apple = \sqrt{6+\sqrt{6+\sqrt{6+\cdots}}}</math>, we can see that <math>apple = \sqrt{6+\apple}</math>.
+
<math>\emph{Solution:}</math>
 +
 
 +
If we set <math>apple = \sqrt{6+\sqrt{6+\sqrt{6+\cdots}}}</math>, we can see that <math>apple = \sqrt{6+apple}</math>.
  
 
Solving, we get <math>\boxed{apple = 3}</math>
 
Solving, we get <math>\boxed{apple = 3}</math>

Revision as of 09:00, 21 March 2020

The Apple Method is a method for solving algebra problems. An apple is used to make a clever algebraic substitution.

Examples

Evaluate: \[\sqrt{6+\sqrt{6+\sqrt{6+\cdots}}}\]

$\emph{Solution:}$

If we set $apple = \sqrt{6+\sqrt{6+\sqrt{6+\cdots}}}$, we can see that $apple = \sqrt{6+apple}$.

Solving, we get $\boxed{apple = 3}$