Difference between revisions of "1995 IMO Problems/Problem 4"

Line 1: Line 1:
 
The positive real numbers <math>x_0, x_1, x_2, x_3, x_4.....x_{1994}, x_{1995}</math> satisfy the relations  
 
The positive real numbers <math>x_0, x_1, x_2, x_3, x_4.....x_{1994}, x_{1995}</math> satisfy the relations  
<math>x_0=x_{1995}</math> and <math>x_{i-1}+\frac{2}{x_{i-1}}=2{x_i}+\frac{1}{x_i}</math> for <math>i=1,2,3,....1995</math>  
+
 
 +
<math>x_0=x_{1995}</math> and <math>x_{i-1}+\frac{2}{x_{i-1}}=2{x_i}+\frac{1}{x_i}</math>  
 +
 
 +
for <math>i=1,2,3,....1995</math>  
  
 
Find the maximum value that <math>x_0</math> can have.
 
Find the maximum value that <math>x_0</math> can have.

Revision as of 02:30, 22 April 2020

The positive real numbers $x_0, x_1, x_2, x_3, x_4.....x_{1994}, x_{1995}$ satisfy the relations

$x_0=x_{1995}$ and $x_{i-1}+\frac{2}{x_{i-1}}=2{x_i}+\frac{1}{x_i}$

for $i=1,2,3,....1995$

Find the maximum value that $x_0$ can have.