Difference between revisions of "Mock AIME 4 2006-2007 Problems/Problem 8"

 
m
Line 5: Line 5:
 
{{solution}}
 
{{solution}}
  
 +
 +
 +
----
 +
 +
*[[Mock AIME 4 2006-2007 Problems/Problem 9| Next Problem]]
 +
*[[Mock AIME 4 2006-2007 Problems/Problem 7| Previous Problem]]
 
*[[Mock AIME 4 2006-2007 Problems]]
 
*[[Mock AIME 4 2006-2007 Problems]]

Revision as of 10:48, 16 January 2007

Problem

The number of increasing sequences of positive integers $a_1 \le a_2 \le a_3 \le \cdots \le a_{10} \le 2007$ such that $a_i-i$ is even for $1\le i \le 10$ can be expressed as ${m \choose n}$ for some positive integers $m > n$. Compute the remainder when $m$ is divided by 1000.

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.