Difference between revisions of "2020 AIME II Problems/Problem 1"
(→Solution) |
(→Solution) |
||
Line 3: | Line 3: | ||
==Solution== | ==Solution== | ||
− | First, we find the prime factorization of <math>20^{20}</math>, which is <math>2^{40}\times5^{20}</math>. The equation <math>{m^2n = 20 ^{20}}</math> tells us that we want to select a perfect square factor of <math>20^ | + | First, we find the prime factorization of <math>20^{20}</math>, which is <math>2^{40}\times5^{20}</math>. The equation <math>{m^2n = 20 ^{20}}</math> tells us that we want to select a perfect square factor of <math>20^{20}</math>, <math>m^2</math>. <math>n</math> will be assigned by default. There are <math>21\times11=231</math> ways to select a perfect square factor of <math>20^{20}</math>, thus our answer is <math>\mbox{231}</math>. |
+ | |||
~superagh | ~superagh |
Revision as of 16:44, 7 June 2020
Problem
Find the number of ordered pairs of positive integers such that .
Solution
First, we find the prime factorization of , which is . The equation tells us that we want to select a perfect square factor of , . will be assigned by default. There are ways to select a perfect square factor of , thus our answer is .
~superagh