Difference between revisions of "1988 AIME Problems/Problem 7"
m (→See also) |
(solution) |
||
Line 1: | Line 1: | ||
− | |||
− | |||
== Problem == | == Problem == | ||
+ | In [[triangle]] <math>ABC</math>, <math>\tan \angle CAB = 22/7</math>, and the [[altitude]] from <math>A</math> divides <math>BC</math> into [[segment]]s of length 3 and 17. What is the area of triangle <math>ABC</math>? | ||
== Solution == | == Solution == | ||
+ | {{image}} | ||
+ | |||
+ | Let <math>D</math> be the intersection of the [[altitude]] and <math>\overline{BC}</math>, and <math>h</math> be the length of the altitude. [[Without loss of generality]], let <math>BD = 17</math> and <math>CD = 3</math>. Then <math>\tan \angle DAB = \frac{17}{h}</math> and <math>\tan \angle CAD = \frac{3}{h}</math>. Using the [[tangent sum formula]], | ||
+ | |||
+ | <div style="text-align:center;"> | ||
+ | <math>\begin{eqnarray*} | ||
+ | \tan CAB &=& \tan (DAB + CAD)\\ | ||
+ | \frac{22}{7} &=& \frac{\tan DAB + \tan CAD}{1 - \tan DAB \cdot \tan CAD} \\ | ||
+ | &=& \frac{\frac{17}{h} + \frac{3}{h}}{1 - \left(\frac{17}{h}\right)\left(\frac{3}{h}\right)} \\ | ||
+ | \frac{22}{7} &=& \frac{20h}{h^2 - 51}\\ | ||
+ | 0 &=& 22h^2 - 140h - 22 \cdot 51\\ | ||
+ | 0 &=& (11h + 51)(h - 11) | ||
+ | \end{eqnarray*}</math></div> | ||
+ | |||
+ | The postive value of <math>h = 11</math>, so the area is <math>\frac{1}{2}(17 + 3)\cdot 11 = 110</math>. | ||
== See also == | == See also == | ||
− | + | {{AIME box|year=1988|num-b=6|num-a=8}} | |
− | + | [[Category:Intermediate Trigonometry Problems]] |
Revision as of 19:32, 26 September 2007
Problem
In triangle , , and the altitude from divides into segments of length 3 and 17. What is the area of triangle ?
Solution
An image is supposed to go here. You can help us out by creating one and editing it in. Thanks.
Let be the intersection of the altitude and , and be the length of the altitude. Without loss of generality, let and . Then and . Using the tangent sum formula,
$\begin{eqnarray*} \tan CAB &=& \tan (DAB + CAD)\\ \frac{22}{7} &=& \frac{\tan DAB + \tan CAD}{1 - \tan DAB \cdot \tan CAD} \\ &=& \frac{\frac{17}{h} + \frac{3}{h}}{1 - \left(\frac{17}{h}\right)\left(\frac{3}{h}\right)} \\ \frac{22}{7} &=& \frac{20h}{h^2 - 51}\\ 0 &=& 22h^2 - 140h - 22 \cdot 51\\ 0 &=& (11h + 51)(h - 11)
\end{eqnarray*}$ (Error compiling LaTeX. Unknown error_msg)The postive value of , so the area is .
See also
1988 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 6 |
Followed by Problem 8 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |