Difference between revisions of "F = MA 2020 (Mock) Problems"
(→Problem 3) |
(→Problem 4) |
||
Line 16: | Line 16: | ||
==Problem 4== | ==Problem 4== | ||
− | <math>2</math> blocks are connected by a massless string which slide down an inclined plane having an angle of inclination of <math> | + | <math>2</math> blocks are connected by a massless string which slide down an inclined plane having an angle of inclination of <math>40^\circ</math>. The masses of the blocks are <math>M1 = 4 kg</math> and <math>M2 = 2kg</math>, and <math>M1</math> is above <math>M2</math>. Both blocks have a Coefficients of friction <math>0.25</math> with the inclined plane. What is the tension in the string? |
Revision as of 15:14, 8 July 2020
Contents
Problem 1
Initially at rest, masses and hang on ends of a massless rope on a massless, smooth pulley and the mass hangs feet above the ground. Once the system is released, what is the speed of the block when it strikes the ground?
Problem 2
An equilateral triangle has a side length of . How high above the base of the triangle the center of mass of the triangle located?
Problem 3
A small object of mass is tied to a string of length and is whirled around a horizontal circle of radius with a constant speed , in a conical pendulum. The center of the circle is vertically below the point of support. What is the period of revolution?
Problem 4
blocks are connected by a massless string which slide down an inclined plane having an angle of inclination of . The masses of the blocks are and , and is above . Both blocks have a Coefficients of friction with the inclined plane. What is the tension in the string?