Difference between revisions of "1989 AIME Problems/Problem 4"

(solution (could use editing), box)
m
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
If <math>a<b<c<d<e^{}_{}</math> are [[consecutive]] [[positive]] [[integer]]s such that <math>b+c+d^{}_{}</math> is a [[perfect square]] and <math>a+b+c+d+e^{}_{}</math> is a [[perfect cube]], what is the smallest possible value of <math>c^{}_{}</math>?
+
If <math>a<b<c<d<e</math> are [[consecutive]] [[positive]] [[integer]]s such that <math>b+c+d</math> is a [[perfect square]] and <math>a+b+c+d+e</math> is a [[perfect cube]], what is the smallest possible value of <math>c</math>?
  
 
== Solution ==
 
== Solution ==

Revision as of 21:07, 17 July 2008

Problem

If $a<b<c<d<e$ are consecutive positive integers such that $b+c+d$ is a perfect square and $a+b+c+d+e$ is a perfect cube, what is the smallest possible value of $c$?

Solution

Since the middle term of an arithmetic progression with an odd number of terms is the average of the series, we know $b + c + d = 3c$ and $a + b + c + d + e = 5c$. Thus, $c$ must be in the form of $3 \cdot x^2$ based upon the first part and in the form of $5^2 \cdot y^3$ based upon the second part, with $x$ and $y$ denoting an integers. $c$ is minimized if it’s prime factorization contains only $3,5$, and since there is a cubed term in $5^2 \cdot y^3$, $3^3$ must be a factor of $c$. $3^35^2 = 675$, which works as the solution.

See also

1989 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions