Difference between revisions of "2016 AMC 8 Problems/Problem 23"
(→Video Solution) |
(→Solution 1) |
||
Line 3: | Line 3: | ||
<math>\textbf{(A) }90\qquad\textbf{(B) }105\qquad\textbf{(C) }120\qquad\textbf{(D) }135\qquad \textbf{(E) }150</math> | <math>\textbf{(A) }90\qquad\textbf{(B) }105\qquad\textbf{(C) }120\qquad\textbf{(D) }135\qquad \textbf{(E) }150</math> | ||
− | ==Solution | + | ==Solution== |
Observe that <math>\triangle{EAB}</math> is equilateral. Therefore, <math>m\angle{AEB}=m\angle{EAB}=m\angle{EBA} = 60^{\circ}</math>. Since <math>CD</math> is a straight line, we conclude that <math>m\angle{EBD} = 180^{\circ}-60^{\circ}=120^{\circ}</math>. Since <math>BE=BD</math> (both are radii of the same circle), <math>\triangle{BED}</math> is isosceles, meaning that <math>m\angle{BED}=m\angle{BDE}=30^{\circ}</math>. Similarly, <math>m\angle{AEC}=m\angle{ACE}=30^{\circ}</math>. | Observe that <math>\triangle{EAB}</math> is equilateral. Therefore, <math>m\angle{AEB}=m\angle{EAB}=m\angle{EBA} = 60^{\circ}</math>. Since <math>CD</math> is a straight line, we conclude that <math>m\angle{EBD} = 180^{\circ}-60^{\circ}=120^{\circ}</math>. Since <math>BE=BD</math> (both are radii of the same circle), <math>\triangle{BED}</math> is isosceles, meaning that <math>m\angle{BED}=m\angle{BDE}=30^{\circ}</math>. Similarly, <math>m\angle{AEC}=m\angle{ACE}=30^{\circ}</math>. | ||
Now, <math>\angle{CED}=m\angle{AEC}+m\angle{AEB}+m\angle{BED} = 30^{\circ}+60^{\circ}+30^{\circ} = 120^{\circ}</math>. Therefore, the answer is <math>\boxed{\textbf{(C) }\ 120}</math>. | Now, <math>\angle{CED}=m\angle{AEC}+m\angle{AEB}+m\angle{BED} = 30^{\circ}+60^{\circ}+30^{\circ} = 120^{\circ}</math>. Therefore, the answer is <math>\boxed{\textbf{(C) }\ 120}</math>. |
Revision as of 00:02, 2 November 2020
Two congruent circles centered at points and each pass through the other circle's center. The line containing both and is extended to intersect the circles at points and . The circles intersect at two points, one of which is . What is the degree measure of ?
Solution
Observe that is equilateral. Therefore, . Since is a straight line, we conclude that . Since (both are radii of the same circle), is isosceles, meaning that . Similarly, .
Now, . Therefore, the answer is .