Difference between revisions of "2021 USAJMO Problems/Problem 6"
(Blanked the page) (Tag: Blanking) |
|||
Line 1: | Line 1: | ||
+ | Let <math>n \geq 4</math> be an integer. Find all positive real solutions to the following system of <math>2n</math> equations: | ||
+ | \begin{align*} | ||
+ | a_{1} &=\frac{1}{a_{2 n}}+\frac{1}{a_{2}}, & a_{2}&=a_{1}+a_{3}, \\ | ||
+ | a_{3}&=\frac{1}{a_{2}}+\frac{1}{a_{4}}, & a_{4}&=a_{3}+a_{5}, \\ | ||
+ | a_{5}&=\frac{1}{a_{4}}+\frac{1}{a_{6}}, & a_{6}&=a_{5}+a_{7} \\ | ||
+ | &\vdots & &\vdots \\ | ||
+ | a_{2 n-1}&=\frac{1}{a_{2 n-2}}+\frac{1}{a_{2 n}}, & a_{2 n}&=a_{2 n-1}+a_{1} | ||
+ | \end{align*} |
Revision as of 13:42, 15 April 2021
Let be an integer. Find all positive real solutions to the following system of equations:
\begin{align*} a_{1} &=\frac{1}{a_{2 n}}+\frac{1}{a_{2}}, & a_{2}&=a_{1}+a_{3}, \\ a_{3}&=\frac{1}{a_{2}}+\frac{1}{a_{4}}, & a_{4}&=a_{3}+a_{5}, \\ a_{5}&=\frac{1}{a_{4}}+\frac{1}{a_{6}}, & a_{6}&=a_{5}+a_{7} \\ &\vdots & &\vdots \\ a_{2 n-1}&=\frac{1}{a_{2 n-2}}+\frac{1}{a_{2 n}}, & a_{2 n}&=a_{2 n-1}+a_{1} \end{align*}