Difference between revisions of "1969 IMO Problems/Problem 2"

(solution 2)
Line 6: Line 6:
 
<cmath>f(x_1)=f(x_2)=f(x_1+x_2-x_1)</cmath>
 
<cmath>f(x_1)=f(x_2)=f(x_1+x_2-x_1)</cmath>
 
We can get <math>x_2-x_1 = 2k\pi</math> for <math>k\in N^*</math>. Thus, <math>x_2-x_1=m\pi</math> for some integer <math>m.</math>
 
We can get <math>x_2-x_1 = 2k\pi</math> for <math>k\in N^*</math>. Thus, <math>x_2-x_1=m\pi</math> for some integer <math>m.</math>
 +
==Solution 2 (longer)==
 +
By the cosine addition formula,
 +
<cmath>f(x)=(\cos{a_1}+\frac{1}{2}\cos{a_2}+\frac{1}{4}\cos{a_3}+\cdots+\frac{1}{2^{n-1}}cos{a_n})\cos{x}-(\sin{a_1}+\frac{1}{2}\sin{a_2}+\frac{1}{4}\sin{a_3}+\cdots+\frac{1}{2^{n-1}\sin{a_n}})\sin{x}</cmath>
 +
This implies that if <math>f(x_1)=0</math>,
 +
<cmath>\tan{x_1}=\frac{\cos{a_1}+\frac{1}{2}\cos{a_2}+\frac{1}{4}\cos{a_3}+\cdots+\frac{1}{2^{n-1}}cos{a_n}}{\sin{a_1}+\frac{1}{2}\sin{a_2}+\frac{1}{4}\sin{a_3}+\cdots+\frac{1}{2^{n-1}\sin{a_n}}}</cmath>
 +
Since the period of <math>\tan{x}</math> is <math>\pi</math>, this means that <math>\tan{x_1}=\tan{x_1+\pi}=\tan{x_1+m\pi}</math> for any natural number <math>m</math>. That implies that every value <math>x_1+m\pi</math> is a zero of <math>f(x)</math>.
  
 
==See Also==
 
==See Also==
  
 
{{IMO box|year=1969|num-b=1|num-a=3}}
 
{{IMO box|year=1969|num-b=1|num-a=3}}

Revision as of 10:29, 4 April 2024

Problem

Let $a_1, a_2,\cdots, a_n$ be real constants, $x$ a real variable, and \[f(x)=\cos(a_1+x)+\frac{1}{2}\cos(a_2+x)+\frac{1}{4}\cos(a_3+x)+\cdots+\frac{1}{2^{n-1}}\cos(a_n+x).\] Given that $f(x_1)=f(x_2)=0,$ prove that $x_2-x_1=m\pi$ for some integer $m.$

Solution

Because the period of $\cos(x)$ is $2\pi$, the period of $f(x)$ is also $2\pi$. \[f(x_1)=f(x_2)=f(x_1+x_2-x_1)\] We can get $x_2-x_1 = 2k\pi$ for $k\in N^*$. Thus, $x_2-x_1=m\pi$ for some integer $m.$

Solution 2 (longer)

By the cosine addition formula, \[f(x)=(\cos{a_1}+\frac{1}{2}\cos{a_2}+\frac{1}{4}\cos{a_3}+\cdots+\frac{1}{2^{n-1}}cos{a_n})\cos{x}-(\sin{a_1}+\frac{1}{2}\sin{a_2}+\frac{1}{4}\sin{a_3}+\cdots+\frac{1}{2^{n-1}\sin{a_n}})\sin{x}\] This implies that if $f(x_1)=0$, \[\tan{x_1}=\frac{\cos{a_1}+\frac{1}{2}\cos{a_2}+\frac{1}{4}\cos{a_3}+\cdots+\frac{1}{2^{n-1}}cos{a_n}}{\sin{a_1}+\frac{1}{2}\sin{a_2}+\frac{1}{4}\sin{a_3}+\cdots+\frac{1}{2^{n-1}\sin{a_n}}}\] Since the period of $\tan{x}$ is $\pi$, this means that $\tan{x_1}=\tan{x_1+\pi}=\tan{x_1+m\pi}$ for any natural number $m$. That implies that every value $x_1+m\pi$ is a zero of $f(x)$.

See Also

1969 IMO (Problems) • Resources
Preceded by
Problem 1
1 2 3 4 5 6 Followed by
Problem 3
All IMO Problems and Solutions