Difference between revisions of "1977 IMO Problems/Problem 4"

(Created page with "==Problem== Let <math>a,b</math> be two natural numbers. When we divide <math>a^2+b^2</math> by <math>a+b</math>, we the the remainder <math>r</math> and the quotient <math>q....")
 
Line 5: Line 5:
 
Using <math>r=1977-q^2</math>, we have <math>a^2+b^2=(a+b)q+1977-q^2</math>, or <math>q^2-(a+b)q+a^2+b^2-1977=0</math>, which implies <math>\Delta=7908+2ab-2(a^2+b^2)\ge 0</math>. If we now assume Wlog that <math>a\ge b</math>, it follows <math>a+b\le 88</math>. If <math>q\le 43</math>, then <math>r=1977-q^2\ge 128</math>, contradicting <math>r<a+b\le 88</math>. But <math>q\le 44</math> from <math>q^2+r=1977</math>, thus <math>q=44</math>. It follows <math>r=41</math>, and we get <math>a^2+b^2=44(a+b)+41\Leftrightarrow (a-22)^2+(b-22)^2=1009\in \mathbb{P}</math>. By Jacobi's two squares theorem, we infer that <math>15^2+28^2=1009</math> is the only representation of <math>1009</math> as a sum of squares. This forces <math>\boxed{(a,b)=(37,50) , (7, 50)}</math>, and permutations. <math>\blacksquare</math>
 
Using <math>r=1977-q^2</math>, we have <math>a^2+b^2=(a+b)q+1977-q^2</math>, or <math>q^2-(a+b)q+a^2+b^2-1977=0</math>, which implies <math>\Delta=7908+2ab-2(a^2+b^2)\ge 0</math>. If we now assume Wlog that <math>a\ge b</math>, it follows <math>a+b\le 88</math>. If <math>q\le 43</math>, then <math>r=1977-q^2\ge 128</math>, contradicting <math>r<a+b\le 88</math>. But <math>q\le 44</math> from <math>q^2+r=1977</math>, thus <math>q=44</math>. It follows <math>r=41</math>, and we get <math>a^2+b^2=44(a+b)+41\Leftrightarrow (a-22)^2+(b-22)^2=1009\in \mathbb{P}</math>. By Jacobi's two squares theorem, we infer that <math>15^2+28^2=1009</math> is the only representation of <math>1009</math> as a sum of squares. This forces <math>\boxed{(a,b)=(37,50) , (7, 50)}</math>, and permutations. <math>\blacksquare</math>
  
The above solution was posted and copyrighted by cobbler. The original thread for this problem can be found here:
+
The above solution was posted and copyrighted by cobbler. The original thread for this problem can be found here: [https://aops.com/community/p3404470]
  
 
== See Also == {{IMO box|year=1977|num-b=3|num-a=5}}
 
== See Also == {{IMO box|year=1977|num-b=3|num-a=5}}

Revision as of 15:45, 29 January 2021

Problem

Let $a,b$ be two natural numbers. When we divide $a^2+b^2$ by $a+b$, we the the remainder $r$ and the quotient $q.$ Determine all pairs $(a, b)$ for which $q^2 + r = 1977.$

Solution

Using $r=1977-q^2$, we have $a^2+b^2=(a+b)q+1977-q^2$, or $q^2-(a+b)q+a^2+b^2-1977=0$, which implies $\Delta=7908+2ab-2(a^2+b^2)\ge 0$. If we now assume Wlog that $a\ge b$, it follows $a+b\le 88$. If $q\le 43$, then $r=1977-q^2\ge 128$, contradicting $r<a+b\le 88$. But $q\le 44$ from $q^2+r=1977$, thus $q=44$. It follows $r=41$, and we get $a^2+b^2=44(a+b)+41\Leftrightarrow (a-22)^2+(b-22)^2=1009\in \mathbb{P}$. By Jacobi's two squares theorem, we infer that $15^2+28^2=1009$ is the only representation of $1009$ as a sum of squares. This forces $\boxed{(a,b)=(37,50) , (7, 50)}$, and permutations. $\blacksquare$

The above solution was posted and copyrighted by cobbler. The original thread for this problem can be found here: [1]

See Also

1977 IMO (Problems) • Resources
Preceded by
Problem 3
1 2 3 4 5 6 Followed by
Problem 5
All IMO Problems and Solutions