Difference between revisions of "1985 AJHSME Problem 12"

(Created page with "== Problem 12 == A square and a triangle have equal perimeters. The lengths of the three sides of the triangle are <math>6.2 \text{ cm}</math>, <math>8.3 \text{ cm}</math> a...")
 
(Solution)
 
Line 4: Line 4:
  
 
<math>\text{(A)}\ 24\text{ cm}^2 \qquad \text{(B)}\ 36\text{ cm}^2 \qquad \text{(C)}\ 48\text{ cm}^2 \qquad \text{(D)}\ 64\text{ cm}^2 \qquad \text{(E)}\ 144\text{ cm}^2</math>
 
<math>\text{(A)}\ 24\text{ cm}^2 \qquad \text{(B)}\ 36\text{ cm}^2 \qquad \text{(C)}\ 48\text{ cm}^2 \qquad \text{(D)}\ 64\text{ cm}^2 \qquad \text{(E)}\ 144\text{ cm}^2</math>
 +
 +
==In-depth Solution by BoundlessBrain!==
 +
https://youtu.be/rIEgWFY_afM
  
 
== Solution ==
 
== Solution ==
 
The perimeter of the triangle is <math>6.2+8.3+9.5 = 24</math> cm, so the side length of the square is <math>\frac{24}{4} = 6</math> cm. The area of the square is <math>6^2 = \boxed{\text{(B)} 36}</math> square centimeters.
 
The perimeter of the triangle is <math>6.2+8.3+9.5 = 24</math> cm, so the side length of the square is <math>\frac{24}{4} = 6</math> cm. The area of the square is <math>6^2 = \boxed{\text{(B)} 36}</math> square centimeters.

Latest revision as of 14:58, 4 July 2023

Problem 12

A square and a triangle have equal perimeters. The lengths of the three sides of the triangle are $6.2 \text{ cm}$, $8.3 \text{ cm}$ and $9.5 \text{ cm}$. The area of the square is

$\text{(A)}\ 24\text{ cm}^2 \qquad \text{(B)}\ 36\text{ cm}^2 \qquad \text{(C)}\ 48\text{ cm}^2 \qquad \text{(D)}\ 64\text{ cm}^2 \qquad \text{(E)}\ 144\text{ cm}^2$

In-depth Solution by BoundlessBrain!

https://youtu.be/rIEgWFY_afM

Solution

The perimeter of the triangle is $6.2+8.3+9.5 = 24$ cm, so the side length of the square is $\frac{24}{4} = 6$ cm. The area of the square is $6^2 = \boxed{\text{(B)} 36}$ square centimeters.