Difference between revisions of "2021 AIME I Problems/Problem 7"
(→Problem) |
Cellsecret (talk | contribs) (→Problem) |
||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
Find the number of pairs <math>(m,n)</math> of positive integers with <math>1\le m<n\le 30</math> such that there exists a real number <math>x</math> satisfying<cmath>\sin(mx)+\sin(nx)=2.</cmath> | Find the number of pairs <math>(m,n)</math> of positive integers with <math>1\le m<n\le 30</math> such that there exists a real number <math>x</math> satisfying<cmath>\sin(mx)+\sin(nx)=2.</cmath> | ||
+ | |||
+ | ==Solution== | ||
+ | Since <math>-1\leq\sin(x)\leq1</math>, <math>\sin(mx)+\sin(nx)=2</math> means that each of <math>\sin(mx)</math> and <math>\sin(nx)</math> must be exactly <math>1</math>. Then <math>m</math> and <math>n</math> must be cycles away, or the difference between them must be multiple of <math>4</math>. If <math>m</math> is <math>1</math>, then <math>n</math> can be <math>5,9,13,17,21,25,29</math>. Like this, the table below can be listed: | ||
+ | |||
+ | {| class="wikitable" style="text-align:center;width:100%" | ||
+ | |- | ||
+ | | | ||
+ | ! scope="col" | '''Range of <math>m</math>''' | ||
+ | ! scope="col" | '''Number of Possibilities''' | ||
+ | |- | ||
+ | ! scope="row" | '''Case 1''' | ||
+ | | <math>1 \leq m \leq 2</math> | ||
+ | | <math>7</math> | ||
+ | |- | ||
+ | ! scope="row" | '''Case 2''' | ||
+ | | <math>3 \leq m \leq 6</math> | ||
+ | | <math>6</math> | ||
+ | |- | ||
+ | ! scope="row" | '''Case 3''' | ||
+ | | <math>7 \leq m \leq 10</math> | ||
+ | | <math>5</math> | ||
+ | |- | ||
+ | ! scope="row" | '''Case 4''' | ||
+ | | <math>11 \leq m \leq 14</math> | ||
+ | | <math>4</math> | ||
+ | |- | ||
+ | ! scope="row" | '''Case 5''' | ||
+ | | <math>15 \leq m \leq 18</math> | ||
+ | | <math>3</math> | ||
+ | |- | ||
+ | ! scope="row" | '''Case 6''' | ||
+ | | <math>19 \leq m \leq 22</math> | ||
+ | | <math>2</math> | ||
+ | |- | ||
+ | ! scope="row" | '''Case 7''' | ||
+ | | <math>23 \leq m \leq 26</math> | ||
+ | | <math>1</math> | ||
+ | |- | ||
+ | ! scope="row" | '''Case 8''' | ||
+ | | <math>27 \leq m \leq 30</math> | ||
+ | | <math>0</math> | ||
+ | |- | ||
+ | |} | ||
+ | |||
+ | In total, there are <math>\boxed{62}</math> possible solutions. | ||
+ | |||
+ | However the answer is <math>63</math>, where is the last possible solution? | ||
+ | |||
+ | ~Interstigation | ||
==Solution== | ==Solution== |
Revision as of 18:57, 11 March 2021
Contents
Problem
Find the number of pairs of positive integers with such that there exists a real number satisfying
Solution
Since , means that each of and must be exactly . Then and must be cycles away, or the difference between them must be multiple of . If is , then can be . Like this, the table below can be listed:
Range of | Number of Possibilities | |
---|---|---|
Case 1 | ||
Case 2 | ||
Case 3 | ||
Case 4 | ||
Case 5 | ||
Case 6 | ||
Case 7 | ||
Case 8 |
In total, there are possible solutions.
However the answer is , where is the last possible solution?
~Interstigation
Solution
See also
2021 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 6 |
Followed by Problem 8 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.