Difference between revisions of "2021 April MIMC 10 Problems/Problem 5"

(Created page with "Given <math>x:y=5:3, z:w=3:2, y:z=2:1</math>, Find <math>x:w</math>. <math>\textbf{(A)} ~3:1 \qquad\textbf{(B)} ~10:3 \qquad\textbf{(C)} ~5:1 \qquad\textbf{(D)} ~20:3 \qquad\...")
 
(Solution)
 
Line 4: Line 4:
  
 
==Solution==
 
==Solution==
To be Released on April 26th.
+
Clearly, <math>w</math> is the smallest variable here. We can set <math>w</math> to <math>2</math> (other variables also work, but consists more computations). Using our assumption, we can calculate <math>z=3</math>, <math>y=6</math>, and <math>x=10</math>. Therefore, <math>x:w=10:2=\fbox{\textbf{(C)} 5:1}</math>.

Latest revision as of 12:31, 26 April 2021

Given $x:y=5:3, z:w=3:2, y:z=2:1$, Find $x:w$.

$\textbf{(A)} ~3:1 \qquad\textbf{(B)} ~10:3 \qquad\textbf{(C)} ~5:1 \qquad\textbf{(D)} ~20:3 \qquad\textbf{(E)} ~10:1$

Solution

Clearly, $w$ is the smallest variable here. We can set $w$ to $2$ (other variables also work, but consists more computations). Using our assumption, we can calculate $z=3$, $y=6$, and $x=10$. Therefore, $x:w=10:2=\fbox{\textbf{(C)} 5:1}$.