Difference between revisions of "Newton's Sums"
(→Statement) |
(→Proof) |
||
Line 59: | Line 59: | ||
<cmath>\boxed{a_nP_k+a_{n-1}P_{k-1}+a_{n-2}P_{k-2}+...+a_0P_{k-n}=0}.</cmath> | <cmath>\boxed{a_nP_k+a_{n-1}P_{k-1}+a_{n-2}P_{k-2}+...+a_0P_{k-n}=0}.</cmath> | ||
+ | |||
+ | Note: This technically only proves the statements for the cases where <math>k \geq n</math>. For the cases where <math>k < n</math>, an argument based on analyzing individual monomials in the expansion can be used (see http://web.stanford.edu/~marykw/classes/CS250_W19/Netwons_Identities.pdf, for example.) | ||
==Example== | ==Example== |
Revision as of 21:46, 11 July 2021
Newton sums give us a clever and efficient way of finding the sums of roots of a polynomial raised to a power. They can also be used to derive several factoring identities.
Contents
[hide]Statement
Consider a polynomial of degree ,
Let have roots . Define the sum:
Newton's sums tell us that,
(Define for .)
We also can write:
etc., where denotes the -th elementary symmetric sum.
Proof
Let be the roots of a given polynomial . Then, we have that
Thus,
Multiplying each equation by , respectively,
Sum,
Therefore,
Note: This technically only proves the statements for the cases where . For the cases where , an argument based on analyzing individual monomials in the expansion can be used (see http://web.stanford.edu/~marykw/classes/CS250_W19/Netwons_Identities.pdf, for example.)
Example
For a more concrete example, consider the polynomial . Let the roots of be and . Find and .
Newton's Sums tell us that:
Solving, first for , and then for the other variables, yields,
Which gives us our desired solutions, and .