Difference between revisions of "1989 AIME Problems/Problem 8"

(Solution 3 (Finite Differences by Arithmetic))
(Solution 3 (Finite Differences by Arithmetic))
Line 63: Line 63:
  
 
for (real i=1; i<=10; ++i) {
 
for (real i=1; i<=10; ++i) {
   label("$"+string(i^2)+"$",(i-1,0));
+
   label(string(i^2),(i-1,0));
 
}
 
}
  
 
for (real i=1; i<=9; ++i) {
 
for (real i=1; i<=9; ++i) {
   label("$"+string(1+2*i)+"$",(i-0.5,-0.75));
+
   label(string(1+2*i),(i-0.5,-0.75));
 
}
 
}
  
 
for (real i=1; i<=8; ++i) {
 
for (real i=1; i<=8; ++i) {
   label("$2$",(i,-1.5));
+
   label("2",(i,-1.5));
 
}
 
}
  
 
for (real i=1; i<=9; ++i) {
 
for (real i=1; i<=9; ++i) {
   draw((0.05+(i-1),-0.1)--(28/65+(i-1),-0.65),red);
+
   draw((0.1+(i-1),-0.2)--(0.4+(i-1),-0.55),red);
 
}
 
}
  
 
for (real i=1; i<=8; ++i) {
 
for (real i=1; i<=8; ++i) {
   draw((37/65+(i-1),-0.85)--(0.95+(i-1),-1.4),red);
+
   draw((0.6+(i-1),-0.95)--(0.9+(i-1),-1.3),red);
 
}
 
}
  
 
for (real i=1; i<=9; ++i) {
 
for (real i=1; i<=9; ++i) {
   draw((37/65+(i-1),-0.65)--(0.95+(i-1),-0.1),red);
+
   draw((0.6+(i-1),-0.55)--(0.9+(i-1),-0.2),red);
 
}
 
}
  
 
for (real i=1; i<=8; ++i) {
 
for (real i=1; i<=8; ++i) {
   draw((0.05+i,-1.4)--(28/65+i,-0.85),red);
+
   draw((0.1+i,-1.3)--(0.4+i,-0.95),red);
 
}
 
}
  

Revision as of 10:48, 26 June 2021

Problem

Assume that $x_1,x_2,\ldots,x_7$ are real numbers such that \begin{align*} x_1 + 4x_2 + 9x_3 + 16x_4 + 25x_5 + 36x_6 + 49x_7 &= 1, \\ 4x_1 + 9x_2 + 16x_3 + 25x_4 + 36x_5 + 49x_6 + 64x_7 &= 12, \\ 9x_1 + 16x_2 + 25x_3 + 36x_4 + 49x_5 + 64x_6 + 81x_7 &= 123. \end{align*} Find the value of $16x_1+25x_2+36x_3+49x_4+64x_5+81x_6+100x_7$.

Solution 1 (Quadratic Function)

Note that each equation is of the form \[f(k)=k^2x_1+(k+1)^2x_2+(k+2)^2x_3+(k+3)^2x_4+(k+4)^2x_5+(k+5)^2x_6+(k+6)^2x_7,\] for some $k\in\{1,2,3\}.$

When we expand $f(k)$ and combine like terms, we obtain a quadratic function of $k:$ \[f(k)=ak^2+bk+c,\] where $a,b,$ and $c$ are linear combinations of $x_1,x_2,x_3,x_4,x_5,x_6,$ and $x_7.$

We are given that \begin{alignat*}{10} f(1)&=\phantom{42}a+b+c&&=1, \\ f(2)&=4a+2b+c&&=12, \\ f(3)&=9a+3b+c&&=123, \end{alignat*} and we wish to find $f(4).$

We eliminate $c$ by subtracting the first equation from the second, then subtracting the second equation from the third: \begin{align*} 3a+b&=11, \\ 5a+b&=111. \end{align*} By either substitution or elimination, we get $a=50$ and $b=-139.$ Substituting these back produces $c=90.$

Finally, the answer is \[f(4)=16a+4b+c=\boxed{334}.\]

~Azjps (Fundamental Logic)

~MRENTHUSIASM (Reconstruction)

Solution 2 (Linear Combination)

For simplicity purposes, we number the given equations $(1),(2),$ and $(3),$ in that order. Let \[16x_1+25x_2+36x_3+49x_4+64x_5+81x_6+100x_7=S. \hspace{29.5mm}(4)\] Subtracting $(1)$ from $(2),$ subtracting $(2)$ from $(3),$ and subtracting $(3)$ from $(4),$ we obtain the following equations, respectively: \begin{align*} 3x_1 + 5x_2 +  7x_3 +  9x_4 + 11x_5 + 13x_6 + 15x_7 &=11, \hspace{20mm}&(5) \\ 5x_1 + 7x_2 +  9x_3 + 11x_4 + 13x_5 + 15x_6 + 17x_7 &=111, &(6) \\ 7x_1 + 9x_2 + 11x_3 + 13x_4 + 15x_5 + 17x_6 + 19x_7 &=S-123. &(7) \\ \end{align*} Subtracting $(5)$ from $(6)$ and subtracting $(6)$ from $(7),$ we obtain the following equations, respectively: \begin{align*} 2x_1+2x_2+2x_3+2x_4+2x_5+2x_6+2x_7&=100, &(8) \\ 2x_1+2x_2+2x_3+2x_4+2x_5+2x_6+2x_7&=S-234. \hspace{20mm}&(9) \end{align*} Finally, applying the Transitive Property to $(8)$ and $(9)$ gives $S-234=100,$ from which $S=\boxed{334}.$

~Duohead (Fundamental Logic)

~MRENTHUSIASM (Reconstruction)

Solution 3 (Finite Differences by Arithmetic)

Note that the second differences of all quadratic sequences must be constant (but nonzero).

One example, the perfect square sequence, is shown below:

[asy] /* Made by MRENTHUSIASM */ size(20cm);  for (real i=1; i<=10; ++i) {    label(string(i^2),(i-1,0)); }  for (real i=1; i<=9; ++i) {    label(string(1+2*i),(i-0.5,-0.75)); }  for (real i=1; i<=8; ++i) {    label("2",(i,-1.5)); }  for (real i=1; i<=9; ++i) {    draw((0.1+(i-1),-0.2)--(0.4+(i-1),-0.55),red); }  for (real i=1; i<=8; ++i) {    draw((0.6+(i-1),-0.95)--(0.9+(i-1),-1.3),red); }  for (real i=1; i<=9; ++i) {    draw((0.6+(i-1),-0.55)--(0.9+(i-1),-0.2),red); }  for (real i=1; i<=8; ++i) {    draw((0.1+i,-1.3)--(0.4+i,-0.95),red); }  label("First Differences",(-0.75,-0.75),align=W); label("Second Differences",(-0.75,-1.5),align=W); [/asy]

Label equations $(1),(2),(3),$ and $(4)$ as Solution 2 does. Since the coefficients of $x_1,x_2,x_3,x_4,x_5,x_6,x_7,$ or $(1,4,9,16),(4,9,16,25),(9,16,25,36),(16,25,36,49),(25,36,49,64),(36,49,64,81),(49,64,81,100),$ respectively, all form quadratic sequences with second differences $2,$ we conclude that the second differences of equations $(1),(2),(3),(4)$ must be constant.

It follows that the second differences of $(1,12,123,S)$ must be constant, as shown below:

NO EDIT PLEASE. DIAGRAM WILL BE READY SOON

Finally, the answer is $S=123+211=\boxed{334}.$

~MRENTHUSIASM

Solution 4 (Finite Differences by Algebra)

Notice that we may rewrite the equations in the more compact form as: \begin{align*} \sum_{i=1}^{7}i^2x_i&=c_1, \\ \sum_{i=1}^{7}(i+1)^2x_i&=c_2, \\ \sum_{i=1}^{7}(i+2)^2x_i&=c_3, \\ \sum_{i=1}^{7}(i+3)^2x_i&=c_4, \end{align*} where $c_1=1, c_2=12, c_3=123,$ and $c_4$ is what we are trying to find.

Now consider the polynomial given by $f(z) = \sum_{i=1}^7 (i+z)^2x_i$ (we are only treating the $x_i$ as coefficients).

Notice that $f$ is in fact a quadratic. We are given $f(0)=c_1, f(1)=c_2, f(2)=c_3$ and are asked to find $f(3)=c_4$. Using the concept of finite differences (a prototype of differentiation) we find that the second differences of consecutive values is constant, so that by arithmetic operations we find $c_4=\boxed{334}$.

Alternatively, applying finite differences, one obtains \[c_4 = {3 \choose 2}f(2) - {3 \choose 1}f(1) + {3 \choose 0}f(0) =334.\]

Solution 5 (Very Cheap: Not Recommended)

We let $(x_4,x_5,x_6,x_7)=(0,0,0,0)$. Thus, we have \[\begin{cases}  x_1+4x_2+9x_3&=1\\ 4x_1+9x_2+16x_3&=12\\ 9x_1+16x_2+25x_3&=123\\  \end{cases}\] Grinding this out, we have $(x_1,x_2,x_3)=\left(\frac{797}{4},-229,\frac{319}{4}\right)$ which gives $\boxed{334}$ as our final answer.

-Pleaseletmewin

Video Solution

https://www.youtube.com/watch?v=4mOROTEkvWI ~ MathEx

See also

1989 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png