Difference between revisions of "G285 2021 Fall Problem Set Problem 8"

(Created page with "==Problem== If the value of <cmath>\sum_{a=1}^{\infty} \sum_{b=1}^{\infty} \sum_{c=1}^{\infty} \frac{a+2b+3c}{4^(a+b+c)}</cmath> can be represented as <math>\frac{m}{n}</math>...")
 
m (Problem)
Line 1: Line 1:
 
==Problem==
 
==Problem==
If the value of <cmath>\sum_{a=1}^{\infty} \sum_{b=1}^{\infty} \sum_{c=1}^{\infty} \frac{a+2b+3c}{4^(a+b+c)}</cmath> can be represented as <math>\frac{m}{n}</math>, where <math>m</math> and <math>n</math> are relatively prime. Find <math>m+n</math>.
+
If the value of <cmath>\sum_{a=1}^{\infty} \sum_{b=1}^{\infty} \sum_{c=1}^{\infty} \frac{a+2b+3c}{4^{(a+b+c)}}</cmath> can be represented as <math>\frac{m}{n}</math>, where <math>m</math> and <math>n</math> are relatively prime. Find <math>m+n</math>.
  
 
==Solution==
 
==Solution==
 
Geometric series spam
 
Geometric series spam

Revision as of 11:39, 11 July 2021

Problem

If the value of \[\sum_{a=1}^{\infty} \sum_{b=1}^{\infty} \sum_{c=1}^{\infty} \frac{a+2b+3c}{4^{(a+b+c)}}\] can be represented as $\frac{m}{n}$, where $m$ and $n$ are relatively prime. Find $m+n$.

Solution

Geometric series spam