Difference between revisions of "User:Temperal/Introductory Proportion"

(Problem)
Line 5: Line 5:
 
x=ky
 
x=ky
 
\end{cases} </cmath>
 
\end{cases} </cmath>
Find the possible values of '''k''' in terms of '''x''' and '''y'''.
+
Find the possible values of '''k'''.
  
 
==Solution==
 
==Solution==
{{incomplete|solution}}
+
If <math>x=\frac{1}{20}</math>, then <br />
If <math>x=\frac{1} {20}</math>, then <math> \frac{y} {20} = \frac{1} {k}</math> so <math>ky=20</math> or <math>ky=\frac{1} {20}</math>. now we get <math>k=\frac{20} {y}</math> and <math>\frac{1} {20y}</math>. If <math>y=\frac{1} {20}</math>,
+
:<math>\frac{1}{20}=ky</math> and
then we solve again, we get <math>k=20x</math> and <math>\frac{20} {x}</math>
+
:<math>\frac{y}{20}=\frac{1}{k}</math><br />
 +
Solving gets us:<br />
 +
:<math>y=\frac{20}{k}</math>
 +
:<math>\frac{1}{20}=k\frac{20}{k}</math>
 +
:<math>\frac{1}{20}=20</math><br />
 +
Thus, there is no solution when <math>x=\frac{1}{20}</math><br />
 +
If <math>y=\frac{1}{20}</math>, then <br />
 +
:<math>\frac{x}{20}=\frac{1}{k}</math>
 +
:<math>x=\frac{k}{20}</math>
 +
:<math>xk=20</math>
 +
:<math>\frac{k}{20}\cdot k=20</math>
 +
:<math>k^2=400</math>
 +
:<math>k=\pm 20</math><br />
 +
Thus, the possible values of '''k''' are <math>(20,-20)</math>.

Revision as of 12:45, 22 September 2007

Problem

Suppose $\frac{1}{20}$ is either x or y in the following system: \[\begin{cases} xy=\frac{1}{k}\\ x=ky \end{cases}\] Find the possible values of k.

Solution

If $x=\frac{1}{20}$, then

$\frac{1}{20}=ky$ and
$\frac{y}{20}=\frac{1}{k}$

Solving gets us:

$y=\frac{20}{k}$
$\frac{1}{20}=k\frac{20}{k}$
$\frac{1}{20}=20$

Thus, there is no solution when $x=\frac{1}{20}$
If $y=\frac{1}{20}$, then

$\frac{x}{20}=\frac{1}{k}$
$x=\frac{k}{20}$
$xk=20$
$\frac{k}{20}\cdot k=20$
$k^2=400$
$k=\pm 20$

Thus, the possible values of k are $(20,-20)$.