Difference between revisions of "2021 Fall AMC 10A Problems/Problem 25"

(Solution 1)
(Solution 1)
Line 5: Line 5:
  
 
== Solution 1==
 
== Solution 1==
Let <math>r_1</math> and <math>r_2</math> be the roots of <math>\tilde{p}(x)</math>. Then, <math>\tilde{p}(x)=x^2-(r_1+r_2)x+r_1r_2</math>. The solutions to <math>\tilde{p}(\tilde{p}(x))=0</math> is the union of the solutions to <math>x^2-(r_1+r_2)x+(r_1r_2-r_1)=0</math> and <math>x^2-(r_1+r_2)x+(r_1r_2-r_2)=0</math>. It follows that one of these two quadratics has one solution and the other has two. WLOG, assume that the quadratic with one root is <math>x^2-(r_1+r_2)x+(r_1r_2-r_1)=0</math>. Then, the discriminant is <math>0</math>, so <math>(r_1+r_2)^2 = 4r_1r_2 - 4r_1</math>. Thus, <math>r_1-r_2=\pm 2\sqrt{-r}</math>, but for <math>x^2-(r_1+r_2)x+(r_1r_2-r_2)=0</math> to have two solutions, <math>r_1-r_2=- 2\sqrt{-r}</math>. It follows that the sum of the roots of <math>\tilde{p}(x)</math> is <math>2r_1 + 2\sqrt{-r_1}</math>, and its maximum value occurs when <math>r_1 = - \frac{1}{4}</math>. Therefore, <math>\tilde{p}(x)=x^2 - \frac{1}{2} x - \frac{3}{16}</math>, so <math>\tilde{p}(1)= \boxed{\textbf{(A) } \frac{5}{16}}</math>.
+
Let <math>r_1</math> and <math>r_2</math> be the roots of <math>\tilde{p}(x)</math>. Then, <math>\tilde{p}(x)=x^2-(r_1+r_2)x+r_1r_2</math>. The solutions to <math>\tilde{p}(\tilde{p}(x))=0</math> is the union of the solutions to <math>x^2-(r_1+r_2)x+(r_1r_2-r_1)=0</math> and <math>x^2-(r_1+r_2)x+(r_1r_2-r_2)=0</math>. It follows that one of these two quadratics has one solution and the other has two. WLOG, assume that the quadratic with one root is <math>x^2-(r_1+r_2)x+(r_1r_2-r_1)=0</math>. Then, the discriminant is <math>0</math>, so <math>(r_1+r_2)^2 = 4r_1r_2 - 4r_1</math>. Thus, <math>r_1-r_2=\pm 2\sqrt{-r_1}</math>, but for <math>x^2-(r_1+r_2)x+(r_1r_2-r_2)=0</math> to have two solutions, <math>r_1-r_2=- 2\sqrt{-r_1}</math>. It follows that the sum of the roots of <math>\tilde{p}(x)</math> is <math>2r_1 + 2\sqrt{-r_1}</math>, and its maximum value occurs when <math>r_1 = - \frac{1}{4}</math>. Therefore, <math>\tilde{p}(x)=x^2 - \frac{1}{2} x - \frac{3}{16}</math>, so <math>\tilde{p}(1)= \boxed{\textbf{(A) } \frac{5}{16}}</math>.
  
 
~ Leo.Euler
 
~ Leo.Euler

Revision as of 18:36, 22 November 2021

Problem

A quadratic polynomial with real coefficients and leading coefficient $1$ is called $\emph{disrespectful}$ if the equation $p(p(x))=0$ is satisfied by exactly three real numbers. Among all the disrespectful quadratic polynomials, there is a unique such polynomial $\tilde{p}(x)$ for which the sum of the roots is maximized. What is $\tilde{p}(1)$?

$\textbf{(A) } \frac{5}{16} \qquad\textbf{(B) } \frac{1}{2} \qquad\textbf{(C) } \frac{5}{8} \qquad\textbf{(D) } 1 \qquad\textbf{(E) } \frac{9}{8}$

Solution 1

Let $r_1$ and $r_2$ be the roots of $\tilde{p}(x)$. Then, $\tilde{p}(x)=x^2-(r_1+r_2)x+r_1r_2$. The solutions to $\tilde{p}(\tilde{p}(x))=0$ is the union of the solutions to $x^2-(r_1+r_2)x+(r_1r_2-r_1)=0$ and $x^2-(r_1+r_2)x+(r_1r_2-r_2)=0$. It follows that one of these two quadratics has one solution and the other has two. WLOG, assume that the quadratic with one root is $x^2-(r_1+r_2)x+(r_1r_2-r_1)=0$. Then, the discriminant is $0$, so $(r_1+r_2)^2 = 4r_1r_2 - 4r_1$. Thus, $r_1-r_2=\pm 2\sqrt{-r_1}$, but for $x^2-(r_1+r_2)x+(r_1r_2-r_2)=0$ to have two solutions, $r_1-r_2=- 2\sqrt{-r_1}$. It follows that the sum of the roots of $\tilde{p}(x)$ is $2r_1 + 2\sqrt{-r_1}$, and its maximum value occurs when $r_1 = - \frac{1}{4}$. Therefore, $\tilde{p}(x)=x^2 - \frac{1}{2} x - \frac{3}{16}$, so $\tilde{p}(1)= \boxed{\textbf{(A) } \frac{5}{16}}$.

~ Leo.Euler