Difference between revisions of "2021 Fall AMC 10B Problems/Problem 12"

(Created page with "==See Also== {{AMC10 box|year=2021 Fall|ab=B|num-a=13|num-b=11}} {{MAA Notice}}")
 
(See Also)
Line 1: Line 1:
 +
==Problem 12==
 +
Which of the following conditions is sufficient to guarantee that integers <math>x</math>, <math>y</math>, and <math>z</math> satisfy the equation
 +
<cmath>x(x-y)+y(y-z)+z(z-x) = 1?</cmath><math>\textbf{(A)}\: x>y</math> and <math>y=z</math>
 +
<math>\textbf{(B)}\: x=y-1</math> and <math>y=z-1</math>
 +
<math>\textbf{(C)} \: x=z+1</math> and <math>y=x+1</math>
 +
<math>\textbf{(D)} \: x=z</math> and <math>y-1=x</math>
 +
<math>\textbf{(E)} \: x+y+z=1</math>
 +
 +
[[2021 Fall AMC 10B Problems/Problem 12|Solution]]
 +
 +
==Solution 1==
 +
Plugging in every choice, we see that choice <math>\textbf{(D)}</math> works. We have <math>y=x+1, z=x</math>, so
 +
<cmath>x(x-y)+y(y-z)+z(z-x)=x(x-(x+1))+(x+1)((x+1)-x)+x(x-x)=x(-1)+(x+1)(1)=1</cmath>
 +
Our answer is <math>\textbf{(D)}</math>.
 +
 +
~kingofpineapplz
 
==See Also==
 
==See Also==
 
{{AMC10 box|year=2021 Fall|ab=B|num-a=13|num-b=11}}
 
{{AMC10 box|year=2021 Fall|ab=B|num-a=13|num-b=11}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 07:15, 23 November 2021

Problem 12

Which of the following conditions is sufficient to guarantee that integers $x$, $y$, and $z$ satisfy the equation \[x(x-y)+y(y-z)+z(z-x) = 1?\]$\textbf{(A)}\: x>y$ and $y=z$ $\textbf{(B)}\: x=y-1$ and $y=z-1$ $\textbf{(C)} \: x=z+1$ and $y=x+1$ $\textbf{(D)} \: x=z$ and $y-1=x$ $\textbf{(E)} \: x+y+z=1$

Solution

Solution 1

Plugging in every choice, we see that choice $\textbf{(D)}$ works. We have $y=x+1, z=x$, so \[x(x-y)+y(y-z)+z(z-x)=x(x-(x+1))+(x+1)((x+1)-x)+x(x-x)=x(-1)+(x+1)(1)=1\] Our answer is $\textbf{(D)}$.

~kingofpineapplz

See Also

2021 Fall AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png